# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_tensor_slice """ import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore import dtype as mstype from mindspore.nn import Cell from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config class NetWorkSlicePositive(Cell): def __init__(self): super(NetWorkSlicePositive, self).__init__() self.tensor_ret0 = Tensor(np.ones([1, 2, 2], np.int32)) self.tensor_ret1 = Tensor(np.ones([4, 7, 4], np.int32)) self.tensor_ret2 = Tensor(np.ones([6, 8, 10], np.int32)) self.tensor_ret3 = Tensor(np.ones([3, 8, 10], np.int32)) def construct(self, tensor): ret0 = tensor[3:4:3, 1:5:2, 3:6:2] + self.tensor_ret0 ret1 = tensor[-6:4:1, 7:-8:-1, ::3] + self.tensor_ret1 ret2 = tensor[::, ::, ::] + self.tensor_ret2 ret3 = tensor[::2] + self.tensor_ret3 return ret0, ret1, ret2, ret3 class NetWorkSliceEllipsis(Cell): def __init__(self): super(NetWorkSliceEllipsis, self).__init__() self.tensor_ret0 = Tensor(np.ones([2, 7, 8], np.int32)) self.tensor_ret1 = Tensor(np.ones([6, 7, 8, 9], np.int32)) self.tensor_ret2 = Tensor(np.ones([1, 6, 7, 8, 9], np.int32)) def construct(self, tensor): ret0 = tensor[0:4:2, ..., 1] + self.tensor_ret0 ret1 = tensor[...] + self.tensor_ret1 ret2 = tensor[None] + self.tensor_ret2 ret3 = tensor[True] + self.tensor_ret2 return ret0, ret1, ret2, ret3 class NetWorkReduceDimension(Cell): def __init__(self): super(NetWorkReduceDimension, self).__init__() self.tensor_ret0 = Tensor(np.ones([2, 4, 1], np.int32)) self.tensor_ret1 = Tensor(np.ones([3, 4], np.int32)) self.tensor_ret2 = Tensor(np.ones([6, 8], np.int32)) self.tensor_ret3 = Tensor(np.array(8, np.int32)) self.tensor_ret4 = Tensor(np.ones([8, 10], np.int32)) def construct(self, tensor): ret0 = tensor[0:6:3, 1:5:1, 3:5:2] + self.tensor_ret0 ret1 = tensor[::2, 1, ::3] + self.tensor_ret1 ret2 = tensor[::, ::, 0] + self.tensor_ret2 ret3 = tensor[3, 2, 5] + self.tensor_ret3 ret4 = tensor[1] + self.tensor_ret4 return ret0, ret1, ret2, ret3, ret4 class NetWorkStepNegative(Cell): def __init__(self): super(NetWorkStepNegative, self).__init__() self.tensor_ret = Tensor(np.ones([6, 5, 10], np.int32)) def construct(self, tensor): ret = tensor[::1, -5::, ::-1] + self.tensor_ret return ret class NetWorkReduceToScalar(Cell): def __init__(self): super(NetWorkReduceToScalar, self).__init__() self.tensor_ret = Tensor(np.array(9, np.int32)) def construct(self, tensor): ret = tensor[2, 3, 4] + self.tensor_ret return ret class TensorAssignWithSliceError1(Cell): def __init__(self): super(TensorAssignWithSliceError1, self).__init__() def construct(self, a, b): a[1:3:-1,::] = b return a class TensorAssignWithSliceError2(Cell): def __init__(self): super(TensorAssignWithSliceError2, self).__init__() def construct(self, a, b): a[1:3:-1] = b return a class TensorAssignWithSlice2(Cell): def __init__(self): super(TensorAssignWithSlice2, self).__init__() def construct(self, a, b): a[1:5] = b a[3:4] = 5 a[-1:1:-1] = b a[-1:3:-1] = 5 a[::] = b a[::] = 9 return a class TensorAssignWithSlice(Cell): def __init__(self): super(TensorAssignWithSlice, self).__init__() self.c = 2 def construct(self, a, b): a[1:3,::] = b a[2:3:,3:] = b a[::] = b a[::] = self.c a[::,::] = b a[::,::] = self.c a[2:3:,0:, 4:1:-1] = b a[2:3:,0:, 4:1:-1] = self.c z = a return z def test_tensor_assign(): context.set_context(mode=context.GRAPH_MODE, save_graphs=True) net = TensorAssignWithSlice() net2= TensorAssignWithSlice2() net_e1 = TensorAssignWithSliceError1() net_e2 = TensorAssignWithSliceError2() a = np.arange(60).reshape(3,4,5) b = Tensor([1]) Ta = Tensor(a) Ta4d = Tensor(a.reshape(1,3,4,5)) Tb= Tensor([1,3]) Tc= Tensor([]) t = Tensor([1, 2, 3, 4, 5, 6, 7, 8]) net(Ta, b) net2(t, b) # Error for A[Slice] = Number # 1. A[Slice] = Number, Slice error with pytest.raises(ValueError): net_e2(t, 2) # Error for A[Slice] = U, U is a Tensor # 1. A[Slice] = U, u.size is error with pytest.raises(ValueError): net2(t, Tb) # 2. A[Slice] = U, U is empty with pytest.raises(ValueError): net2(t, Tc) # 3. A[Slice] = U, U.size error with pytest.raises(ValueError): net2(t, Tb) # Error for A[Tuple(Slice...)] = Tensor # 1. A[Tuple(Slice...)] = U, U is empty with pytest.raises(ValueError): net(Ta, Tc) # 2. A[Tuple(Slice...)] = U, U.size error with pytest.raises(ValueError): net(Ta, Tb) # 3. A[Tuple(Slice...)] = U, Slice error with pytest.raises(ValueError): net_e1(Ta, b) # Error for A[Tuple(Slice...)] = Number # 1. A[Tuple(Slice...)] = Number, Slice error with pytest.raises(ValueError): net_e1(Ta, 2) net = TensorAssignWithInteger() # Error for A[Number] = scalar/Tensor # 1. A[Number] = U, U is a Tensor, u.size not match with pytest.raises(ValueError): net(Ta, Tb) with pytest.raises(ValueError): net(Ta, Tc) # 2. A[Number] = U, the number index error with pytest.raises(IndexError): net(Ta4d, b) # Error for A[(n,m)] = scalar/Tensor # 1. A[(n,m)] = U, U is a tensor. u.size not match net = TensorAssignWithTupleInteger() with pytest.raises(ValueError): net(Ta, Tc) with pytest.raises(ValueError): net(Ta, Tb) # 2. A[(n,m)] = U, the number index error with pytest.raises(IndexError): net(Ta4d, b) class TensorAssignWithInteger(Cell): def __init__(self): super(TensorAssignWithInteger, self).__init__() def construct(self, a, b): a[1] = 1 a[0] = b return a class TensorAssignWithTupleInteger(Cell): def __init__(self): super(TensorAssignWithTupleInteger, self).__init__() def construct(self, a, b): a[(1)] = 1 a[(1)] = b a[(1,1)] = b a[(1,1)] = 1 return a class TensorAssignWithBoolTensorIndex(Cell): def __init__(self): super(TensorAssignWithBoolTensorIndex, self).__init__() self.t = Tensor(np.arange(60).reshape([3,4,5]), dtype = mstype.float64) def construct(self, a, b, c, u_tensor, _scalar): a[c] = u_scalar a[b] = u_tensor z = a + self.t return z class TensorAssignWithBoolTensorIndexError(Cell): def __init__(self): super(TensorAssignWithBoolTensorIndexError, self).__init__() def construct(self, a, b, c, u_tensor): a[b][c] = u_tensor return a class TensorAssignWithBoolTensorIndex2(Cell): def __init__(self): super(TensorAssignWithBoolTensorIndex2, self).__init__() self.t = Tensor(np.arange(6).reshape([2, 3]), dtype=mstype.float64) self.t = Tensor(np.arange(60).reshape([3,4,5]), dtype = mstype.float64) def construct(self, a, u_tensor, _scalar): a[a > 8] = u_tensor a[a >= 6] = u_scalar a[a < 3] = u_scalar a[a <= 5] = u_tensor a[a == 5] = u_scalar z = a + self.t return z class TensorAssignWithBoolTensorIndex2Error(Cell): def __init__(self): super(TensorAssignWithBoolTensorIndex2Error, self).__init__() def construct(self, a, u_tensor): a[a > 8][a > 5] = u_tensor return a a = np.random.uniform(1,10,[3,4,5]) b = a > 5 c = a < 3 Ta = Tensor(a) Tb = Tensor(b) Tc = Tensor(c) Td = Tensor([True, True]) u_tensor = Tensor([1]) u_tensor_error = Tensor([1, 2]) t_1d = Tensor([1, 2, 3, 4, 5, 6, 7, 8]) u_scalar = 5 def test_tensor_assign_bool_index(): net1 = TensorAssignWithBoolTensorIndex() net2 = TensorAssignWithBoolTensorIndex2() net1(Ta, Tb, Tc, u_tensor, u_scalar) net1(Ta, Tb, Tc, u_tensor, u_scalar) with pytest.raises(ValueError): net1(Ta, Td, Tc, u_tensor, u_scalar) with pytest.raises(ValueError): net1(Ta, u_tensor, Tc, u_tensor, u_scalar) with pytest.raises(ValueError): net1(Ta, Tb, Td, u_tensor, u_scalar) with pytest.raises(ValueError): net1(Ta, Tb, Ta, u_tensor, u_scalar) with pytest.raises(ValueError): net1(Ta, Tb, Tc, u_tensor_error, u_scalar) # net1(Ta, u_tensor, Tc, u_tensor_error, u_scalar) with pytest.raises(ValueError): net2(Ta, u_tensor_error, u_scalar) net3 = TensorAssignWithBoolTensorIndexError() with pytest.raises(AttributeError): net3(Ta, Tb, Tc, u_tensor) with pytest.raises(AttributeError): net3(Ta, Tb, Tc, u_scalar) net4 = TensorAssignWithBoolTensorIndex2Error() with pytest.raises(AttributeError): net4(Ta, u_tensor) with pytest.raises(AttributeError): net4(Ta, u_scalar) test_cases = [ ('TensorAssignWithTupleInteger', { 'block': TensorAssignWithTupleInteger(), 'desc_inputs': [Ta, u_tensor], }), ('TensorAssignWithInteger', { 'block': TensorAssignWithInteger(), 'desc_inputs': [Ta, u_tensor], }), ('TensorAssignWithSlice', { 'block': TensorAssignWithSlice(), 'desc_inputs': [Ta, u_tensor], }), ('TensorAssignWithSlice2', { 'block': TensorAssignWithSlice2(), 'desc_inputs': [t_1d, u_tensor], }), ('TensorAssignWithBoolTensorIndex', { 'block': TensorAssignWithBoolTensorIndex(), 'desc_inputs': [Ta, Tb, Tc, u_tensor, u_scalar], }), ('TensorAssignWithBoolTensorIndex2', { 'block': TensorAssignWithBoolTensorIndex2(), 'desc_inputs': [Ta, u_tensor, u_scalar], }), ('SlicePositive', { 'block': NetWorkSlicePositive(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))], }), ('SliceReduceDimension', { 'block': NetWorkReduceDimension(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))], }), ('SliceNegative', { 'block': NetWorkStepNegative(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))], }), ('SliceReduceToScalar', { 'block': NetWorkReduceToScalar(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))], }), ('TensorSliceEllipsis', { 'block': NetWorkSliceEllipsis(), 'desc_inputs': [Tensor(np.ones([6, 7, 8, 9], np.int32))], }), ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_compile(): context.set_context(mode=context.GRAPH_MODE) return test_cases def test_tensor_slice_reduce_out_of_bounds_neg(): class NetWork(Cell): def __init__(self): super(NetWork, self).__init__() self.tensor_ret = Tensor(np.array(9, np.int32)) def construct(self, tensor): ret = tensor[-7, 3, 4] return ret input_tensor = Tensor(np.ones([6, 8, 10], np.int32)) net = NetWork() with pytest.raises(ValueError) as ex: net(input_tensor) assert "The `begin[0]` should be an int and must greater or equal to -6, but got -7" in str(ex.value) def test_tensor_slice_reduce_out_of_bounds_positive(): class NetWork(Cell): def __init__(self): super(NetWork, self).__init__() self.tensor_ret = Tensor(np.array(9, np.int32)) def construct(self, tensor): ret = tensor[6, 3, 4] return ret input_tensor = Tensor(np.ones([6, 8, 10], np.int32)) net = NetWork() with pytest.raises(ValueError) as ex: net(input_tensor) assert "The `begin[0]` should be an int and must less than 6, but got 6" in str(ex.value)