# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test adam """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Parameter import mindspore.common.dtype as mstype from mindspore.common.api import _executor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import AdamWeightDecay, AdamWeightDecayDynamicLR from mindspore.ops import operations as P class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias") self.matmul = P.MatMul() self.biasAdd = P.BiasAdd() def construct(self, x): x = self.biasAdd(self.matmul(x, self.weight), self.bias) return x class NetWithoutWeight(nn.Cell): def __init__(self): super(NetWithoutWeight, self).__init__() self.matmul = P.MatMul() def construct(self, x): x = self.matmul(x, x) return x def test_adamwithoutparam(): net = NetWithoutWeight() net.set_train() with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"): AdamWeightDecay(net.trainable_params(), learning_rate=0.1) def test_adamw_compile(): """ test_adamw_compile """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _executor.compile(train_network, inputs, label) def test_AdamWeightDecay_beta1(): net = Net() print("**********", net.get_parameters()) with pytest.raises(ValueError): AdamWeightDecay(net.get_parameters(), beta1=1.0, learning_rate=0.1) def test_AdamWeightDecay_beta2(): net = Net() with pytest.raises(ValueError): AdamWeightDecay(net.get_parameters(), beta2=1.0, learning_rate=0.1) def test_AdamWeightDecay_e(): net = Net() with pytest.raises(ValueError): AdamWeightDecay(net.get_parameters(), eps=-0.1, learning_rate=0.1) def test_AdamWeightDecayDynamicLR(): """ test_AdamWeightDecayDynamicLR """ inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = AdamWeightDecayDynamicLR(net.trainable_params(), decay_steps=20, learning_rate=0.1) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _executor.compile(train_network, inputs, label) def test_adam_mindspore_with_empty_params(): net = nn.Flatten() with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"): AdamWeightDecay(net.get_parameters()) class TestSparseOps(nn.Cell): """Define sparse operator""" def __init__(self, sparse_opt): super(TestSparseOps, self).__init__() self.sparse_apply_adam = sparse_opt self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m") self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v") def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices): out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices) return out def test_sparse_adam(): """test sparse operator""" gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) indices = Tensor([0, 1, 2], mstype.int32) net = TestSparseOps(P.SparseApplyAdam()) _executor.compile(net, 0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices) def test_sparse_lazy_adam(): """test sparse operator""" gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) indices = Tensor([0, 1, 2], mstype.int32) net = TestSparseOps(P.SparseApplyLazyAdam()) _executor.compile(net, 0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices)