/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "serving/acl/acl_session.h" #include "include/infer_log.h" namespace mindspore::inference { std::shared_ptr InferSession::CreateSession(const std::string &device, uint32_t device_id) { try { auto session = std::make_shared(); auto ret = session->InitEnv(device, device_id); if (ret != SUCCESS) { return nullptr; } return session; } catch (std::exception &e) { MSI_LOG_ERROR << "Inference CreatSession failed"; return nullptr; } } Status AclSession::LoadModelFromFile(const std::string &file_name, uint32_t &model_id) { Status ret = model_process_.LoadModelFromFile(file_name, model_id); if (ret != SUCCESS) { MSI_LOG_ERROR << "Load model from file failed, model file " << file_name; return FAILED; } std::string dvpp_config_file; auto index = file_name.rfind("."); if (index == std::string::npos) { dvpp_config_file = file_name; } else { dvpp_config_file = file_name.substr(0, index); } dvpp_config_file += "_dvpp_config.json"; std::ifstream fp(dvpp_config_file); if (!fp.is_open()) { MSI_LOG_INFO << "Dvpp config file not exist, model will execute with tensors as inputs, dvpp config file " << dvpp_config_file; return SUCCESS; } fp.close(); if (dvpp_process_.InitWithJsonConfig(dvpp_config_file) != SUCCESS) { MSI_LOG_ERROR << "Dvpp config file parse error, dvpp config file " << dvpp_config_file; return FAILED; } execute_with_dvpp_ = true; MSI_LOG_INFO << "Dvpp config success"; return SUCCESS; } Status AclSession::UnloadModel(uint32_t /*model_id*/) { model_process_.UnLoad(); return SUCCESS; } Status AclSession::ExecuteModel(uint32_t /*model_id*/, const RequestBase &request, ReplyBase &reply) { // set d context aclError rt_ret = aclrtSetCurrentContext(context_); if (rt_ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "set the ascend device context failed"; return FAILED; } return model_process_.Execute(request, reply); } Status AclSession::PreProcess(uint32_t /*model_id*/, const InferImagesBase *images_input, ImagesDvppOutput &dvpp_output) { if (images_input == nullptr) { MSI_LOG_ERROR << "images input is nullptr"; return FAILED; } auto batch_size = images_input->batch_size(); if (batch_size <= 0) { MSI_LOG_ERROR << "invalid batch size " << images_input->batch_size(); return FAILED; } std::vector pic_buffer_list; std::vector pic_size_list; for (size_t i = 0; i < batch_size; i++) { const void *pic_buffer = nullptr; uint32_t pic_size = 0; if (!images_input->get(i, pic_buffer, pic_size) || pic_buffer == nullptr || pic_size == 0) { MSI_LOG_ERROR << "Get request " << 0 << "th buffer failed"; return FAILED; } pic_buffer_list.push_back(pic_buffer); pic_size_list.push_back(pic_size); } auto ret = dvpp_process_.Process(pic_buffer_list, pic_size_list, dvpp_output.buffer_device, dvpp_output.buffer_size); if (ret != SUCCESS) { MSI_LOG_ERROR << "dvpp process failed"; return ret; } return SUCCESS; } Status AclSession::ExecuteModel(uint32_t model_id, const ImagesRequestBase &images_inputs, // images for preprocess const RequestBase &request, ReplyBase &reply) { if (!execute_with_dvpp_) { MSI_LOG_ERROR << "Unexpected images as inputs, DVPP not config"; return INFER_STATUS(INVALID_INPUTS) << "Unexpected images as inputs, DVPP not config"; } aclError rt_ret = aclrtSetCurrentContext(context_); if (rt_ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "set the ascend device context failed"; return FAILED; } if (images_inputs.size() != 1) { MSI_LOG_ERROR << "Only support one input to do DVPP preprocess"; return INFER_STATUS(INVALID_INPUTS) << "Only support one input to do DVPP preprocess"; } if (images_inputs[0] == nullptr) { MSI_LOG_ERROR << "Get first images input failed"; return FAILED; } if (images_inputs[0]->batch_size() != model_process_.GetBatchSize()) { MSI_LOG_ERROR << "Input batch size " << images_inputs[0]->batch_size() << " not match Model batch size " << model_process_.GetBatchSize(); return INFER_STATUS(INVALID_INPUTS) << "Input batch size " << images_inputs[0]->batch_size() << " not match Model batch size " << model_process_.GetBatchSize(); } if (request.size() != 0) { MSI_LOG_ERROR << "only support one input, images input size is 1, tensor inputs is not 0 " << request.size(); return INFER_STATUS(INVALID_INPUTS) << "only support one input, images input size is 1, tensor inputs is not 0 " << request.size(); } ImagesDvppOutput dvpp_output; Status ret = PreProcess(model_id, images_inputs[0], dvpp_output); if (ret != SUCCESS) { MSI_LOG_ERROR << "DVPP preprocess failed"; return ret; } ret = model_process_.Execute(dvpp_output.buffer_device, dvpp_output.buffer_size, reply); if (ret != SUCCESS) { MSI_LOG_ERROR << "Execute model failed"; return ret; } return SUCCESS; } Status AclSession::InitEnv(const std::string &device_type, uint32_t device_id) { device_type_ = device_type; device_id_ = device_id; auto ret = aclInit(nullptr); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "Execute aclInit Failed"; return FAILED; } MSI_LOG_INFO << "acl init success"; ret = aclrtSetDevice(device_id_); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "acl open device " << device_id_ << " failed"; return FAILED; } MSI_LOG_INFO << "open device " << device_id_ << " success"; ret = aclrtCreateContext(&context_, device_id_); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "acl create context failed"; return FAILED; } MSI_LOG_INFO << "create context success"; ret = aclrtCreateStream(&stream_); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "acl create stream failed"; return FAILED; } MSI_LOG_INFO << "create stream success"; aclrtRunMode run_mode; ret = aclrtGetRunMode(&run_mode); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "acl get run mode failed"; return FAILED; } bool is_device = (run_mode == ACL_DEVICE); model_process_.SetIsDevice(is_device); MSI_LOG_INFO << "get run mode success is device input/output " << is_device; if (dvpp_process_.InitResource(stream_) != SUCCESS) { MSI_LOG_ERROR << "dvpp init resource failed"; return FAILED; } MSI_LOG_INFO << "Init acl success, device id " << device_id_; return SUCCESS; } Status AclSession::FinalizeEnv() { dvpp_process_.Finalize(); aclError ret; if (stream_ != nullptr) { ret = aclrtDestroyStream(stream_); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "destroy stream failed"; } stream_ = nullptr; } MSI_LOG_INFO << "end to destroy stream"; if (context_ != nullptr) { ret = aclrtDestroyContext(context_); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "destroy context failed"; } context_ = nullptr; } MSI_LOG_INFO << "end to destroy context"; ret = aclrtResetDevice(device_id_); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "reset devie " << device_id_ << " failed"; } MSI_LOG_INFO << "end to reset device " << device_id_; ret = aclFinalize(); if (ret != ACL_ERROR_NONE) { MSI_LOG_ERROR << "finalize acl failed"; } MSI_LOG_INFO << "end to finalize acl"; return SUCCESS; } AclSession::AclSession() = default; } // namespace mindspore::inference