# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import mindspore.dataset as ds from mindspore import log as logger # test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631] # the label of each image is [0,0,0,1,1] each image can be uniquely identified # via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4} def test_sequential_sampler(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(num_samples, num_repeats=None): sampler = ds.SequentialSampler() data1 = ds.ManifestDataset(manifest_file, num_samples=num_samples, sampler=sampler) if num_repeats is not None: data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) return res assert test_config(num_samples=3, num_repeats=None) == [0, 1, 2] assert test_config(num_samples=None, num_repeats=2) == [0, 1, 2, 3, 4] * 2 assert test_config(num_samples=4, num_repeats=2) == [0, 1, 2, 3] * 2 def test_random_sampler(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(replacement, num_samples, num_repeats): sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(): res.append(map[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) return res # this tests that each epoch COULD return different samples than the previous epoch assert len(set(test_config(replacement=False, num_samples=2, num_repeats=6))) > 2 # the following two tests test replacement works ordered_res = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] assert sorted(test_config(replacement=False, num_samples=None, num_repeats=4)) == ordered_res assert sorted(test_config(replacement=True, num_samples=None, num_repeats=4)) != ordered_res def test_random_sampler_multi_iter(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(replacement, num_samples, num_repeats, validate): sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) while num_repeats > 0: res = [] for item in data1.create_dict_iterator(): res.append(map[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) if validate != sorted(res): break num_repeats -= 1 assert num_repeats > 0 test_config(replacement=True, num_samples=5, num_repeats=5, validate=[0, 1, 2, 3, 4, 5]) def test_sampler_py_api(): sampler = ds.SequentialSampler().create() sampler.set_num_rows(128) sampler.set_num_samples(64) sampler.initialize() sampler.get_indices() sampler = ds.RandomSampler().create() sampler.set_num_rows(128) sampler.set_num_samples(64) sampler.initialize() sampler.get_indices() sampler = ds.DistributedSampler(8, 4).create() sampler.set_num_rows(128) sampler.set_num_samples(64) sampler.initialize() sampler.get_indices() if __name__ == '__main__': test_sequential_sampler(True) test_random_sampler(True) test_random_sampler_multi_iter(True) test_sampler_py_api()