# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_criteo.""" import os import sys import argparse from mindspore import context, ParallelMode from mindspore.communication.management import init from mindspore.train.model import Model from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor from src.deepfm import ModelBuilder, AUCMetric from src.config import DataConfig, ModelConfig, TrainConfig from src.dataset import create_dataset, DataType from src.callback import EvalCallBack, LossCallBack sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) parser = argparse.ArgumentParser(description='CTR Prediction') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--ckpt_path', type=str, default=None, help='Checkpoint path') parser.add_argument('--eval_file_name', type=str, default="./auc.log", help='eval file path') parser.add_argument('--loss_file_name', type=str, default="./loss.log", help='loss file path') parser.add_argument('--do_eval', type=bool, default=True, help='Do evaluation or not.') args_opt, _ = parser.parse_known_args() device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id) if __name__ == '__main__': data_config = DataConfig() model_config = ModelConfig() train_config = TrainConfig() rank_size = int(os.environ.get("RANK_SIZE", 1)) if rank_size > 1: context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) init() rank_id = int(os.environ.get('RANK_ID')) else: rank_size = None rank_id = None ds_train = create_dataset(args_opt.dataset_path, train_mode=True, epochs=train_config.train_epochs, batch_size=train_config.batch_size, data_type=DataType(data_config.data_format), rank_size=rank_size, rank_id=rank_id) model_builder = ModelBuilder(ModelConfig, TrainConfig) train_net, eval_net = model_builder.get_train_eval_net() auc_metric = AUCMetric() model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric}) time_callback = TimeMonitor(data_size=ds_train.get_dataset_size()) loss_callback = LossCallBack(loss_file_path=args_opt.loss_file_name) callback_list = [time_callback, loss_callback] if train_config.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=train_config.save_checkpoint_steps, keep_checkpoint_max=train_config.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix=train_config.ckpt_file_name_prefix, directory=args_opt.ckpt_path, config=config_ck) callback_list.append(ckpt_cb) if args_opt.do_eval: ds_eval = create_dataset(args_opt.dataset_path, train_mode=False, epochs=train_config.train_epochs, batch_size=train_config.batch_size, data_type=DataType(data_config.data_format)) eval_callback = EvalCallBack(model, ds_eval, auc_metric, eval_file_path=args_opt.eval_file_name) callback_list.append(eval_callback) model.train(train_config.train_epochs, ds_train, callbacks=callback_list)