# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Data operations, will be used in run_pretrain.py """ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine.datasets as de import mindspore.dataset.transforms.c_transforms as C from mindspore import log as logger from .config import bert_net_cfg def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", enable_data_sink="true", data_sink_steps=1, data_dir=None, schema_dir=None): """create train dataset""" # apply repeat operations repeat_count = epoch_size files = os.listdir(data_dir) data_files = [] for file_name in files: if "tfrecord" in file_name: data_files.append(os.path.join(data_dir, file_name)) ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"], shuffle=de.Shuffle.FILES if do_shuffle == "true" else False, num_shards=device_num, shard_id=rank, shard_equal_rows=True) ori_dataset_size = ds.get_dataset_size() print('origin dataset size: ', ori_dataset_size) new_size = ori_dataset_size if enable_data_sink == "true": new_size = data_sink_steps * bert_net_cfg.batch_size ds.set_dataset_size(new_size) new_repeat_count = int(repeat_count * ori_dataset_size // ds.get_dataset_size()) type_cast_op = C.TypeCast(mstype.int32) ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) ds = ds.map(input_columns="segment_ids", operations=type_cast_op) ds = ds.map(input_columns="input_mask", operations=type_cast_op) ds = ds.map(input_columns="input_ids", operations=type_cast_op) # apply batch operations ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True) logger.info("data size: {}".format(ds.get_dataset_size())) logger.info("repeatcount: {}".format(ds.get_repeat_count())) return ds, new_repeat_count def create_ner_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy", data_file_path=None, schema_file_path=None): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"]) if assessment_method == "Spearman_correlation": type_cast_op_float = C.TypeCast(mstype.float32) ds = ds.map(input_columns="label_ids", operations=type_cast_op_float) else: ds = ds.map(input_columns="label_ids", operations=type_cast_op) ds = ds.map(input_columns="segment_ids", operations=type_cast_op) ds = ds.map(input_columns="input_mask", operations=type_cast_op) ds = ds.map(input_columns="input_ids", operations=type_cast_op) ds = ds.repeat(repeat_count) # apply shuffle operation buffer_size = 960 ds = ds.shuffle(buffer_size=buffer_size) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) return ds def create_classification_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy", data_file_path=None, schema_file_path=None): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"]) if assessment_method == "Spearman_correlation": type_cast_op_float = C.TypeCast(mstype.float32) ds = ds.map(input_columns="label_ids", operations=type_cast_op_float) else: ds = ds.map(input_columns="label_ids", operations=type_cast_op) ds = ds.map(input_columns="segment_ids", operations=type_cast_op) ds = ds.map(input_columns="input_mask", operations=type_cast_op) ds = ds.map(input_columns="input_ids", operations=type_cast_op) ds = ds.repeat(repeat_count) # apply shuffle operation buffer_size = 960 ds = ds.shuffle(buffer_size=buffer_size) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) return ds def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, schema_file_path=None, is_training=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) if is_training: ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "start_positions", "end_positions", "unique_ids", "is_impossible"]) ds = ds.map(input_columns="start_positions", operations=type_cast_op) ds = ds.map(input_columns="end_positions", operations=type_cast_op) else: ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "unique_ids"]) ds = ds.map(input_columns="input_ids", operations=type_cast_op) ds = ds.map(input_columns="input_mask", operations=type_cast_op) ds = ds.map(input_columns="segment_ids", operations=type_cast_op) ds = ds.map(input_columns="segment_ids", operations=type_cast_op) ds = ds.map(input_columns="input_mask", operations=type_cast_op) ds = ds.map(input_columns="input_ids", operations=type_cast_op) ds = ds.repeat(repeat_count) # apply shuffle operation buffer_size = 960 ds = ds.shuffle(buffer_size=buffer_size) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) return ds