# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' Bert finetune and evaluation script. ''' import os import json import argparse from src.bert_for_finetune import BertFinetuneCell, BertNER from src.finetune_eval_config import optimizer_cfg, bert_net_cfg from src.dataset import create_ner_dataset from src.utils import make_directory, LossCallBack, LoadNewestCkpt from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation import mindspore.common.dtype as mstype from mindspore import context from mindspore import log as logger from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell from mindspore.nn.optim import AdamWeightDecayDynamicLR, Lamb, Momentum from mindspore.common.tensor import Tensor from mindspore.train.model import Model from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net _cur_dir = os.getcwd() def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1): """ do train """ if load_checkpoint_path == "": raise ValueError("Pretrain model missed, finetune task must load pretrain model!") steps_per_epoch = dataset.get_dataset_size() # optimizer if optimizer_cfg.optimizer == 'AdamWeightDecayDynamicLR': optimizer = AdamWeightDecayDynamicLR(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num, learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.learning_rate, end_learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.end_learning_rate, power=optimizer_cfg.AdamWeightDecayDynamicLR.power, warmup_steps=int(steps_per_epoch * epoch_num * 0.1), weight_decay=optimizer_cfg.AdamWeightDecayDynamicLR.weight_decay, eps=optimizer_cfg.AdamWeightDecayDynamicLR.eps) elif optimizer_cfg.optimizer == 'Lamb': optimizer = Lamb(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num, start_learning_rate=optimizer_cfg.Lamb.start_learning_rate, end_learning_rate=optimizer_cfg.Lamb.end_learning_rate, power=optimizer_cfg.Lamb.power, weight_decay=optimizer_cfg.Lamb.weight_decay, warmup_steps=int(steps_per_epoch * epoch_num * 0.1), decay_filter=optimizer_cfg.Lamb.decay_filter) elif optimizer_cfg.optimizer == 'Momentum': optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate, momentum=optimizer_cfg.Momentum.momentum) else: raise Exception("Optimizer not supported. support: [AdamWeightDecayDynamicLR, Lamb, Momentum]") # load checkpoint into network ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1) ckpoint_cb = ModelCheckpoint(prefix="ner", directory=save_checkpoint_path, config=ckpt_config) param_dict = load_checkpoint(load_checkpoint_path) load_param_into_net(network, param_dict) update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000) netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell) model = Model(netwithgrads) callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(), ckpoint_cb] model.train(epoch_num, dataset, callbacks=callbacks) def eval_result_print(assessment_method="accuracy", callback=None): """print eval result""" if assessment_method == "accuracy": print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num, callback.acc_num / callback.total_num)) elif assessment_method == "f1": print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP))) print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN))) print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN))) elif assessment_method == "mcc": print("MCC {:.6f} ".format(callback.cal())) elif assessment_method == "spearman_correlation": print("Spearman Correlation is {:.6f} ".format(callback.cal()[0])) else: raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]") def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_method="accuracy", data_file="", load_checkpoint_path="", vocab_file="", label2id_file="", tag_to_index=None): """ do eval """ if load_checkpoint_path == "": raise ValueError("Finetune model missed, evaluation task must load finetune model!") if assessment_method == "clue_benchmark": bert_net_cfg.batch_size = 1 net_for_pretraining = network(bert_net_cfg, False, num_class, use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index) net_for_pretraining.set_train(False) param_dict = load_checkpoint(load_checkpoint_path) load_param_into_net(net_for_pretraining, param_dict) model = Model(net_for_pretraining) if assessment_method == "clue_benchmark": from src.cluener_evaluation import submit submit(model=model, path=data_file, vocab_file=vocab_file, use_crf=use_crf, label2id_file=label2id_file) else: if assessment_method == "accuracy": callback = Accuracy() elif assessment_method == "f1": callback = F1((use_crf.lower() == "true"), num_class) elif assessment_method == "mcc": callback = MCC() elif assessment_method == "spearman_correlation": callback = Spearman_Correlation() else: raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]") columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"] for data in dataset.create_dict_iterator(): input_data = [] for i in columns_list: input_data.append(Tensor(data[i])) input_ids, input_mask, token_type_id, label_ids = input_data logits = model.predict(input_ids, input_mask, token_type_id, label_ids) callback.update(logits, label_ids) print("==============================================================") eval_result_print(assessment_method, callback) print("==============================================================") def run_ner(): """run ner task""" parser = argparse.ArgumentParser(description="run classifier") parser.add_argument("--device_target", type=str, default="Ascend", help="Device type, default is Ascend") parser.add_argument("--assessment_method", type=str, default="accuracy", help="assessment_method include: " "[F1, clue_benchmark], default is F1") parser.add_argument("--do_train", type=str, default="false", help="Eable train, default is false") parser.add_argument("--do_eval", type=str, default="false", help="Eable eval, default is false") parser.add_argument("--use_crf", type=str, default="false", help="Use crf, default is false") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--epoch_num", type=int, default="1", help="Epoch number, default is 1.") parser.add_argument("--num_class", type=int, default="2", help="The number of class, default is 2.") parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path, used in clue benchmark") parser.add_argument("--label2id_file_path", type=str, default="", help="label2id file path, used in clue benchmark") parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path") parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path") parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path") parser.add_argument("--train_data_file_path", type=str, default="", help="Data path, it is better to use absolute path") parser.add_argument("--eval_data_file_path", type=str, default="", help="Data path, it is better to use absolute path") parser.add_argument("--schema_file_path", type=str, default="", help="Schema path, it is better to use absolute path") args_opt = parser.parse_args() epoch_num = args_opt.epoch_num assessment_method = args_opt.assessment_method.lower() load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false": raise ValueError("At least one of 'do_train' or 'do_eval' must be true") if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "": raise ValueError("'train_data_file_path' must be set when do finetune task") if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "": raise ValueError("'eval_data_file_path' must be set when do evaluation task") if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.vocab_file_path == "": raise ValueError("'vocab_file_path' must be set to do clue benchmark") if args_opt.use_crf.lower() == "true" and args_opt.label2id_file_path == "": raise ValueError("'label2id_file_path' must be set to use crf") if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.label2id_file_path == "": raise ValueError("'label2id_file_path' must be set to do clue benchmark") target = args_opt.device_target if target == "Ascend": context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) elif target == "GPU": context.set_context(mode=context.GRAPH_MODE, device_target="GPU") if bert_net_cfg.compute_type != mstype.float32: logger.warning('GPU only support fp32 temporarily, run with fp32.') bert_net_cfg.compute_type = mstype.float32 else: raise Exception("Target error, GPU or Ascend is supported.") tag_to_index = None if args_opt.use_crf.lower() == "true": with open(args_opt.label2id_file_path) as json_file: tag_to_index = json.load(json_file) max_val = max(tag_to_index.values()) tag_to_index[""] = max_val + 1 tag_to_index[""] = max_val + 2 number_labels = len(tag_to_index) else: number_labels = args_opt.num_class netwithloss = BertNER(bert_net_cfg, True, num_labels=number_labels, use_crf=(args_opt.use_crf.lower() == "true"), tag_to_index=tag_to_index, dropout_prob=0.1) if args_opt.do_train.lower() == "true": ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path, schema_file_path=args_opt.schema_file_path) do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num) if args_opt.do_eval.lower() == "true": if save_finetune_checkpoint_path == "": load_finetune_checkpoint_dir = _cur_dir else: load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path) load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir, ds.get_dataset_size(), epoch_num, "ner") if args_opt.do_eval.lower() == "true": ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path, schema_file_path=args_opt.schema_file_path) do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method, args_opt.eval_data_file_path, load_finetune_checkpoint_path, args_opt.vocab_file_path, args_opt.label2id_file_path, tag_to_index) if __name__ == "__main__": run_ner()