# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ######################## train alexnet example ######################## train alexnet and get network model files(.ckpt) : python train.py --data_path /YourDataPath """ import argparse from src.config import alexnet_cfg as cfg from src.dataset import create_dataset_cifar10 from src.generator_lr import get_lr from src.alexnet import AlexNet import mindspore.nn as nn from mindspore import context from mindspore import Tensor from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\ path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) ds_train = create_dataset_cifar10(args.data_path, cfg.batch_size, 1) network = AlexNet(cfg.num_classes) loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size())) opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) print("============== Starting Training ==============") model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], dataset_sink_mode=args.dataset_sink_mode)