# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore import mindspore.nn as nn from mindspore import context from mindspore.common.tensor import Tensor from mindspore.ops import operations as P from mindspore.graph_utils.python_pass import registe_pass, unregiste_pass, set_renorm, gen_new_parameter,\ cancel_new_parameter from mindspore.common.api import _generate_pip_args from mindspore._c_expression import generate_key, Executor_ from mindspore.graph_utils.graph_pattern import IsIn, IsPrimTypeOf, CallWith, IsNot, AnyPattern, NewTensor,\ NewParameter, Imm context.set_context(mode=context.GRAPH_MODE) def get_func_graph(obj, *args, phase="validate"): args_names, args_list = _generate_pip_args(obj, *args) dic = dict(zip(args_names, args_list)) key = generate_key(phase, dic) phase_prefix = str(key[1]) if phase == 'export': phase = phase + '.' + phase_prefix + '.' + str(obj.create_time) else: phase = phase_prefix + phase + '.' + str(obj.create_time) _executor = Executor_.get_instance() _executor.compile(obj, args_list, phase, False) return _executor.get_func_graph(phase) def test_softmax_relu(): """ Use python pass to transform from Softmax to ReLU. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = AnyPattern() softmax_pattern = IsPrimTypeOf(P.Softmax()) pattern = CallWith(softmax_pattern, inputs=[x]) relu_pattern = IsPrimTypeOf(P.ReLU(), should_replace=False) target = CallWith(relu_pattern, inputs=[x]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2) unregiste_pass(softmax_relu_pass) assert "ReLU" in transformed_repr assert "Softmax" not in transformed_repr def test_softmax_relu_sigmoid(): """ Use python pass to transform from Softmax(x) to ReLU(Sigmoid(x)). NOTE: Sigmoid pattern only exists in the target. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = AnyPattern() softmax_pattern = IsPrimTypeOf(P.Softmax()) pattern = CallWith(softmax_pattern, inputs=[x]) sigmoid_pattern = IsPrimTypeOf(P.Sigmoid(), should_replace=False) call_sigmoid = CallWith(sigmoid_pattern, [x]) relu_pattern = IsPrimTypeOf(P.ReLU(), should_replace=False) target = CallWith(relu_pattern, inputs=[call_sigmoid]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(3) unregiste_pass(softmax_relu_pass) assert "ReLU" in transformed_repr assert "Sigmoid" in transformed_repr assert "Softmax" not in transformed_repr def test_isin_pattern_0(): """ Test IsIn pattern which expresses the IsIn/OneOf semantics. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = AnyPattern() softmax_pattern = IsPrimTypeOf(P.Softmax()) call_softmax = CallWith(softmax_pattern, inputs=[x]) relu_pattern = IsPrimTypeOf(P.ReLU()) call_relu = CallWith(relu_pattern, inputs=[x]) pattern = IsIn([call_softmax, call_relu]) relu6_pattern = IsPrimTypeOf(P.ReLU6(), should_replace=False) target = CallWith(relu6_pattern, inputs=[x]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2) unregiste_pass(softmax_relu_pass) assert "ReLU6" in transformed_repr assert "Softmax" not in transformed_repr def test_isin_pattern_1(): """ Test IsIn. IsIn is used as nested inputs for the target in this case. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_neg_pass(): x = AnyPattern() softmax_pattern = IsPrimTypeOf(P.Softmax()) call_softmax = CallWith(softmax_pattern, inputs=[x]) relu_pattern = IsPrimTypeOf(P.ReLU()) call_relu = CallWith(relu_pattern, inputs=[x]) pattern = IsIn([call_softmax, call_relu]) neg_ops = IsPrimTypeOf(P.Neg(), should_replace=False) target = CallWith(neg_ops, inputs=[pattern]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(4) print(transformed_repr) unregiste_pass(softmax_neg_pass) assert "Neg" in transformed_repr assert "Softmax" in transformed_repr def test_isnot_pattern_0(): """ Test IsNot pattern which expresses the IsNot semantics. Case: IsNot pass failed to match """ set_renorm(False) class ConvBN(nn.Cell): def __init__(self): super(ConvBN, self).__init__() self.conv = P.Conv2D(32, 3) self.conv_weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) self.scale = Tensor(np.ones([32]), mindspore.float32) self.bias = Tensor(np.ones([32]), mindspore.float32) self.mean = Tensor(np.ones([32]), mindspore.float32) self.variance = Tensor(np.ones([32]), mindspore.float32) self.bn = P.BatchNorm() def construct(self, x): x = self.conv(x, self.conv_weight) x = self.bn(x, self.scale, self.bias, self.mean, self.variance) return x inputs = Tensor(np.random.normal(0, 1, (10, 32, 32, 32)), mindspore.float32) conv_bn_model = ConvBN() @registe_pass(run_only_once=True) def single_bn_pass(): """ Sub a BN which does NOT take Conv as inputs to ReLU6. """ conv2d_prim = IsPrimTypeOf("Conv2D") conv2d = CallWith(conv2d_prim) pattern_0 = IsNot(conv2d) pattern = CallWith(P.BatchNorm(), inputs=[pattern_0]) target = CallWith(P.ReLU6(), inputs=[pattern_0]) return pattern, target @registe_pass(run_only_once=True) def bn_pass(): """ Sub a BN to Softmax. """ bn = P.BatchNorm() pattern = CallWith(bn) softmax = P.Softmax() target = CallWith(softmax, should_replace=False) return pattern, target transformed_repr = get_func_graph(conv_bn_model, inputs).get_return().expanded_str(5) unregiste_pass(single_bn_pass) unregiste_pass(bn_pass) assert "ReLU6" not in transformed_repr assert "Softmax" in transformed_repr set_renorm(True) def test_isnot_pattern_1(): """ Test IsNot pattern which expresses the IsNot semantics. Case: IsNot pattern matches with the graph """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def single_bn_pass(): """ Sub a BN which does NOT take MatMul as inputs to ReLU6. """ matmul = IsPrimTypeOf("MatMul") pattern_0 = IsNot(matmul) softmax = P.Softmax() pattern = CallWith(softmax, inputs=[pattern_0]) relu6 = P.ReLU6() target = CallWith(relu6, inputs=[pattern_0], should_replace=False) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) unregiste_pass(single_bn_pass) assert "ReLU6" in transformed_repr assert "Softmax" not in transformed_repr def test_newtensor_pattern(): """ Test NewTensor pattern in the target """ set_renorm(False) inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_addn_pass(): x = AnyPattern() softmax = P.Softmax() pattern = CallWith(softmax, inputs=[x]) weight_tensor = Tensor(np.zeros([42]), mindspore.float16) new_weight = NewTensor(weight_tensor) addn_ops = P.AddN() target = CallWith(addn_ops, inputs=[x, new_weight], should_replace=False) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2) unregiste_pass(softmax_addn_pass) assert "AddN" in transformed_repr assert "Softmax" not in transformed_repr set_renorm(True) def test_newparameter_pattern(): """ Test NewParameter pattern in the target """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_addn_pass(): x = AnyPattern() softmax = P.Softmax() pattern = CallWith(softmax, inputs=[x]) default_tensor0 = Tensor(np.ones((4, 4)), mindspore.float32) default_tensor1 = Tensor(np.ones((4, 4)), mindspore.float32) new_para_0 = NewParameter("Merlin", default_tensor0) new_para_1 = NewParameter("Arthur", default_tensor1) target_0 = CallWith(P.MatMul(), inputs=[new_para_0, new_para_1], should_replace=False) target = CallWith("make_tuple", inputs=[target_0], should_replace=False) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) print(transformed_repr) unregiste_pass(softmax_addn_pass) assert "MatMul" in transformed_repr assert "make_tuple" in transformed_repr assert "Softmax" not in transformed_repr def test_imm_pattern(): """ Test NewParameter pattern in the target """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_addn_pass(): x = AnyPattern() softmax = P.Softmax() pattern = CallWith(softmax, inputs=[x]) imm = Imm(0) target_0 = CallWith("make_tuple", inputs=[pattern], should_replace=False) target = CallWith("tuple_getitem", inputs=[target_0, imm], should_replace=False) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) print(transformed_repr) unregiste_pass(softmax_addn_pass) assert "make_tuple" in transformed_repr assert "tuple_getitem" in transformed_repr assert "Softmax" in transformed_repr def test_gen_new_parameter(): """ Test gen_new_parameter """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() default_tensor = Tensor(np.ones((4, 4)), mindspore.float32) new_para = NewParameter("Merlin", default_tensor, should_replace=True) gen_new_parameter(new_para) @registe_pass(run_only_once=True) def softmax_make_tuple_pass(): x = AnyPattern() softmax = P.Softmax() pattern = CallWith(softmax, inputs=[x]) target = CallWith("make_tuple", inputs=[pattern, new_para], should_replace=False) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) print(transformed_repr) assert "Merlin" in transformed_repr unregiste_pass(softmax_make_tuple_pass) cancel_new_parameter(new_para) transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) print(transformed_repr) assert "Merlin" not in transformed_repr