# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train.""" import argparse from mindspore import context from mindspore.communication.management import init from mindspore.nn.optim.momentum import Momentum from mindspore import Model, ParallelMode from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor from src.md_dataset import create_dataset from src.losses import OhemLoss from src.deeplabv3 import deeplabv3_resnet50 from src.config import config parser = argparse.ArgumentParser(description="Deeplabv3 training") parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.") parser.add_argument('--epoch_size', type=int, default=6, help='Epoch size.') parser.add_argument('--batch_size', type=int, default=2, help='Batch size.') parser.add_argument('--data_url', required=True, default=None, help='Train data url') parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path') parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.") parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.") parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.") args_opt = parser.parse_args() print(args_opt) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) class LossCallBack(Callback): """ Monitor the loss in training. Note: if per_print_times is 0 do not print loss. Args: per_print_times (int): Print loss every times. Default: 1. """ def __init__(self, per_print_times=1): super(LossCallBack, self).__init__() if not isinstance(per_print_times, int) or per_print_times < 0: raise ValueError("print_step must be int and >= 0") self._per_print_times = per_print_times def step_end(self, run_context): cb_params = run_context.original_args() print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num, str(cb_params.net_outputs))) def model_fine_tune(flags, train_net, fix_weight_layer): checkpoint_path = flags.checkpoint_url if checkpoint_path is None: return param_dict = load_checkpoint(checkpoint_path) load_param_into_net(train_net, param_dict) for para in train_net.trainable_params(): if fix_weight_layer in para.name: para.requires_grad = False if __name__ == "__main__": if args_opt.distribute == "true": context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) init() args_opt.base_size = config.crop_size args_opt.crop_size = config.crop_size train_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="train") dataset_size = train_dataset.get_dataset_size() time_cb = TimeMonitor(data_size=dataset_size) callback = [time_cb, LossCallBack()] if args_opt.enable_save_ckpt == "true": config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps, keep_checkpoint_max=args_opt.save_checkpoint_num) ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck) callback.append(ckpoint_cb) net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size], infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates, decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride, fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid) net.set_train() model_fine_tune(args_opt, net, 'layer') loss = OhemLoss(config.seg_num_classes, config.ignore_label) opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay) model = Model(net, loss, opt) model.train(args_opt.epoch_size, train_dataset, callback)