# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ut for model serialize(save/load)""" import os import stat import time import numpy as np import pytest import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter from mindspore.ops import operations as P from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore.nn import WithLossCell, TrainOneStepCell from mindspore.train.callback import _CheckpointManager from mindspore.train.serialization import save_checkpoint, load_checkpoint,load_param_into_net, \ _exec_save_checkpoint, export, _save_graph from ..ut_filter import run_on_onnxruntime, non_graph_engine from mindspore import context context.set_context(mode=context.GRAPH_MODE) class Net(nn.Cell): """Net definition.""" def __init__(self, num_classes=10): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros") self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0) self.flatten = nn.Flatten() self.fc = nn.Dense(int(224*224*64/16), num_classes) def construct(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.flatten(x) x = self.fc(x) return x _input_x = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) _cur_dir = os.path.dirname(os.path.realpath(__file__)) def setup_module(): import shutil if os.path.exists('./test_files'): shutil.rmtree('./test_files') def test_save_graph(): """ test_exec_save_graph """ class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() def construct(self, x, y): z = self.add(x, y) return z net = Net() net.set_train() out_me_list = [] x = Tensor(np.random.rand(2, 1, 2, 3).astype(np.float32)) y = Tensor(np.array([1.2]).astype(np.float32)) out_put = net(x, y) _save_graph(network=net, file_name="net-graph.meta") out_me_list.append(out_put) def test_save_checkpoint(): """ test_save_checkpoint """ parameter_list = [] one_param = {} param1 = {} param2 = {} one_param['name'] = "param_test" one_param['data'] = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), dtype=mstype.float32) param1['name'] = "param" param1['data'] = Tensor(np.random.randint(0, 255, [12, 1024]), dtype=mstype.float32) param2['name'] = "new_param" param2['data'] = Tensor(np.random.randint(0, 255, [12, 1024, 1]), dtype=mstype.float32) parameter_list.append(one_param) parameter_list.append(param1) parameter_list.append(param2) if os.path.exists('./parameters.ckpt'): os.chmod('./parameters.ckpt', stat.S_IWRITE) os.remove('./parameters.ckpt') ckpoint_file_name = os.path.join(_cur_dir, './parameters.ckpt') save_checkpoint(parameter_list, ckpoint_file_name) def test_load_checkpoint_error_filename(): ckpoint_file_name = 1 with pytest.raises(ValueError): load_checkpoint(ckpoint_file_name) def test_load_checkpoint(): ckpoint_file_name = os.path.join(_cur_dir, './parameters.ckpt') par_dict = load_checkpoint(ckpoint_file_name) assert len(par_dict) == 3 assert par_dict['param_test'].name == 'param_test' assert par_dict['param_test'].data.dtype() == mstype.float32 assert par_dict['param_test'].data.shape() == (1, 3, 224, 224) assert isinstance(par_dict, dict) def test_checkpoint_manager(): """ test_checkpoint_manager """ ckp_mgr = _CheckpointManager() ckpoint_file_name = os.path.join(_cur_dir, './test1.ckpt') with open(ckpoint_file_name, 'w'): os.chmod(ckpoint_file_name, stat.S_IWUSR | stat.S_IRUSR) ckp_mgr.update_ckpoint_filelist(_cur_dir, "test") assert ckp_mgr.ckpoint_num == 1 ckp_mgr.remove_ckpoint_file(ckpoint_file_name) ckp_mgr.update_ckpoint_filelist(_cur_dir, "test") assert ckp_mgr.ckpoint_num == 0 assert not os.path.exists(ckpoint_file_name) another_file_name = os.path.join(_cur_dir, './test2.ckpt') another_file_name = os.path.realpath(another_file_name) with open(another_file_name, 'w'): os.chmod(another_file_name, stat.S_IWUSR | stat.S_IRUSR) ckp_mgr.update_ckpoint_filelist(_cur_dir, "test") assert ckp_mgr.ckpoint_num == 1 ckp_mgr.remove_oldest_ckpoint_file() ckp_mgr.update_ckpoint_filelist(_cur_dir, "test") assert ckp_mgr.ckpoint_num == 0 assert not os.path.exists(another_file_name) # test keep_one_ckpoint_per_minutes file1 = os.path.realpath(os.path.join(_cur_dir, './time_file1.ckpt')) file2 = os.path.realpath(os.path.join(_cur_dir, './time_file2.ckpt')) file3 = os.path.realpath(os.path.join(_cur_dir, './time_file3.ckpt')) with open(file1, 'w'): os.chmod(file1, stat.S_IWUSR | stat.S_IRUSR) with open(file2, 'w'): os.chmod(file2, stat.S_IWUSR | stat.S_IRUSR) with open(file3, 'w'): os.chmod(file3, stat.S_IWUSR | stat.S_IRUSR) time1 = time.time() ckp_mgr.update_ckpoint_filelist(_cur_dir, "time_file") assert ckp_mgr.ckpoint_num == 3 ckp_mgr.keep_one_ckpoint_per_minutes(1, time1) ckp_mgr.update_ckpoint_filelist(_cur_dir, "time_file") assert ckp_mgr.ckpoint_num == 1 if os.path.exists(_cur_dir + '/time_file1.ckpt'): os.chmod(_cur_dir + '/time_file1.ckpt', stat.S_IWRITE) os.remove(_cur_dir + '/time_file1.ckpt') def test_load_param_into_net_error_net(): parameter_dict = {} one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32), name="conv1.weight") parameter_dict["conv1.weight"] = one_param with pytest.raises(TypeError): load_param_into_net('', parameter_dict) def test_load_param_into_net_error_dict(): net = Net(10) with pytest.raises(TypeError): load_param_into_net(net, '') def test_load_param_into_net_erro_dict_param(): net = Net(10) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0 parameter_dict = {} one_param = '' parameter_dict["conv1.weight"] = one_param with pytest.raises(TypeError): load_param_into_net(net, parameter_dict) def test_load_param_into_net_has_more_param(): """ test_load_param_into_net_has_more_param """ net = Net(10) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0 parameter_dict = {} one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32), name="conv1.weight") parameter_dict["conv1.weight"] = one_param two_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32), name="conv1.weight") parameter_dict["conv1.w"] = two_param load_param_into_net(net, parameter_dict) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 1 def test_load_param_into_net_param_type_and_shape_error(): net = Net(10) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0 parameter_dict = {} one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7))), name="conv1.weight") parameter_dict["conv1.weight"] = one_param with pytest.raises(RuntimeError): load_param_into_net(net, parameter_dict) def test_load_param_into_net_param_type_error(): net = Net(10) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0 parameter_dict = {} one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.int32), name="conv1.weight") parameter_dict["conv1.weight"] = one_param with pytest.raises(RuntimeError): load_param_into_net(net, parameter_dict) def test_load_param_into_net_param_shape_error(): net = Net(10) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0 parameter_dict = {} one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7,)), dtype=mstype.int32), name="conv1.weight") parameter_dict["conv1.weight"] = one_param with pytest.raises(RuntimeError): load_param_into_net(net, parameter_dict) def test_load_param_into_net(): net = Net(10) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0 parameter_dict = {} one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32), name="conv1.weight") parameter_dict["conv1.weight"] = one_param load_param_into_net(net, parameter_dict) assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 1 def test_exec_save_checkpoint(): net = Net() loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) opt = Momentum(net.trainable_params(), 0.0, 0.9, 0.0001, 1024) loss_net = WithLossCell(net, loss) train_network = TrainOneStepCell(loss_net, opt) _exec_save_checkpoint(train_network, ckpoint_file_name="./new_ckpt.ckpt") load_checkpoint("new_ckpt.ckpt") def test_load_checkpoint_empty_file(): os.mknod("empty.ckpt") with pytest.raises(ValueError): load_checkpoint("empty.ckpt") class MYNET(nn.Cell): """ NET definition """ def __init__(self): super(MYNET, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64*222*222, 3) # padding=0 def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.flatten(x) out = self.fc(x) return out @non_graph_engine def test_export(): net = MYNET() input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) export(net, input_data, file_name="./me_export.pb", file_format="GEIR") class BatchNormTester(nn.Cell): "used to test exporting network in training mode in onnx format" def __init__(self, num_features): super(BatchNormTester, self).__init__() self.bn = nn.BatchNorm2d(num_features) def construct(self, x): return self.bn(x) def test_batchnorm_train_onnx_export(): input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) net = BatchNormTester(3) net.set_train() if not net.training: raise ValueError('netowrk is not in training mode') export(net, input, file_name='batch_norm.onnx', file_format='ONNX') if not net.training: raise ValueError('netowrk is not in training mode') class LeNet5(nn.Cell): """LeNet5 definition""" def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = P.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x def test_lenet5_onnx_export(): input = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) net = LeNet5() export(net, input, file_name='lenet5.onnx', file_format='ONNX') @run_on_onnxruntime def test_lenet5_onnx_load_run(): onnx_file = 'lenet5.onnx' input = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) net = LeNet5() export(net, input, file_name=onnx_file, file_format='ONNX') import onnx import onnxruntime as ort print('--------------------- onnx load ---------------------') # Load the ONNX model model = onnx.load(onnx_file) # Check that the IR is well formed onnx.checker.check_model(model) # Print a human readable representation of the graph g = onnx.helper.printable_graph(model.graph) print(g) print('------------------ onnxruntime run ------------------') ort_session = ort.InferenceSession(onnx_file) input_map = {'x' : input.asnumpy()} # provide only input x to run model outputs = ort_session.run(None, input_map) print(outputs[0]) # overwrite default weight to run model for item in net.trainable_params(): input_map[item.name] = np.ones(item.default_input.asnumpy().shape, dtype=np.float32) outputs = ort_session.run(None, input_map) print(outputs[0]) def teardown_module(): files = ['parameters.ckpt', 'new_ckpt.ckpt', 'lenet5.onnx', 'batch_norm.onnx', 'empty.ckpt'] for item in files: file_name = './' + item if not os.path.exists(file_name): continue os.chmod(file_name, stat.S_IWRITE) os.remove(file_name)