/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "common/common.h" #include "common/utils.h" #include "dataset/core/client.h" #include "dataset/core/global_context.h" #include "dataset/engine/datasetops/source/cifar_op.h" #include "dataset/engine/datasetops/source/sampler/sampler.h" #include "dataset/engine/datasetops/source/sampler/random_sampler.h" #include "dataset/engine/datasetops/source/sampler/subset_random_sampler.h" #include "dataset/util/de_error.h" #include "dataset/util/path.h" #include "dataset/util/status.h" #include "gtest/gtest.h" #include "utils/log_adapter.h" #include "securec.h" namespace common = mindspore::common; using namespace mindspore::dataset; using mindspore::MsLogLevel::ERROR; using mindspore::ExceptionType::NoExceptionType; using mindspore::LogStream; std::shared_ptr Repeat(int repeatCnt); std::shared_ptr Build(std::vector> ops); std::shared_ptr Cifarop(uint64_t num_works, uint64_t rows, uint64_t conns, std::string path, std::unique_ptr sampler = nullptr, uint64_t num_samples = 0, bool cifar10 = true) { std::shared_ptr so; CifarOp::Builder builder; Status rc = builder.SetNumWorkers(num_works).SetCifarDir(path).SetRowsPerBuffer(rows) .SetOpConnectorSize(conns).SetSampler(std::move(sampler)).SetCifarType(cifar10) .SetNumSamples(num_samples).Build(&so); return so; } class MindDataTestCifarOp : public UT::DatasetOpTesting { protected: }; TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar10) { //Note: CIFAR and Mnist datasets are not included //as part of the build tree. //Download datasets and rebuild if data doesn't //appear in this dataset //Example: python tests/dataset/data/prep_data.py std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; auto tree = Build({Cifarop(16, 2, 32, folder_path, nullptr, 100)}); tree->Prepare(); Status rc = tree->Launch(); if (rc.IsError()) { MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << "."; EXPECT_TRUE(false); } else { DatasetIterator di(tree); TensorMap tensor_map; di.GetNextAsMap(&tensor_map); EXPECT_TRUE(rc.IsOk()); uint64_t i = 0; uint32_t label = 0; while (tensor_map.size() != 0) { tensor_map["label"]->GetItemAt(&label, {}); MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; i++; di.GetNextAsMap(&tensor_map); } EXPECT_TRUE(i == 100); } } TEST_F(MindDataTestCifarOp, TestRandomSamplerCifar10) { uint32_t original_seed = GlobalContext::config_manager()->seed(); GlobalContext::config_manager()->set_seed(0); std::unique_ptr sampler = std::make_unique(true, 12); std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; auto tree = Build({Cifarop(16, 2, 32, folder_path, std::move(sampler), 100)}); tree->Prepare(); Status rc = tree->Launch(); if (rc.IsError()) { MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << "."; EXPECT_TRUE(false); } else { DatasetIterator di(tree); TensorMap tensor_map; di.GetNextAsMap(&tensor_map); EXPECT_TRUE(rc.IsOk()); uint64_t i = 0; uint32_t label = 0; while (tensor_map.size() != 0) { tensor_map["label"]->GetItemAt(&label, {}); MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; i++; di.GetNextAsMap(&tensor_map); } EXPECT_TRUE(i == 12); } GlobalContext::config_manager()->set_seed(original_seed); } TEST_F(MindDataTestCifarOp, TestCifar10NumSample) { std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; auto tree = Build({Cifarop(16, 2, 32, folder_path, nullptr, 100)}); tree->Prepare(); Status rc = tree->Launch(); if (rc.IsError()) { MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << "."; EXPECT_TRUE(false); } else { DatasetIterator di(tree); TensorMap tensor_map; di.GetNextAsMap(&tensor_map); EXPECT_TRUE(rc.IsOk()); uint64_t i = 0; uint32_t label = 0; while (tensor_map.size() != 0) { tensor_map["label"]->GetItemAt(&label, {}); MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; i++; di.GetNextAsMap(&tensor_map); } EXPECT_TRUE(i == 100); } } TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar100) { std::string folder_path = datasets_root_path_ + "/testCifar100Data/"; auto tree = Build({Cifarop(16, 2, 32, folder_path, nullptr, 100, false)}); tree->Prepare(); Status rc = tree->Launch(); if (rc.IsError()) { MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << "."; EXPECT_TRUE(false); } else { DatasetIterator di(tree); TensorMap tensor_map; di.GetNextAsMap(&tensor_map); EXPECT_TRUE(rc.IsOk()); uint64_t i = 0; uint32_t coarse = 0; uint32_t fine = 0; while (tensor_map.size() != 0) { tensor_map["coarse_label"]->GetItemAt(&coarse, {}); tensor_map["fine_label"]->GetItemAt(&fine, {}); MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << " coarse:" << coarse << " fine:" << fine << "\n"; i++; di.GetNextAsMap(&tensor_map); } EXPECT_TRUE(i == 100); } }