# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train resnet.""" import os import random import argparse import numpy as np from mindspore import context from mindspore import Tensor from mindspore import dataset as de from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model, ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.communication.management import init, get_rank, get_group_size import mindspore.nn as nn import mindspore.common.initializer as weight_init from src.lr_generator import get_lr, warmup_cosine_annealing_lr parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101') parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') parser.add_argument('--parameter_server', type=bool, default=False, help='Run parameter server train') args_opt = parser.parse_args() random.seed(1) np.random.seed(1) de.config.set_seed(1) if args_opt.net == "resnet50": from src.resnet import resnet50 as resnet if args_opt.dataset == "cifar10": from src.config import config1 as config from src.dataset import create_dataset1 as create_dataset else: from src.config import config2 as config from src.dataset import create_dataset2 as create_dataset elif args_opt.net == "resnet101": from src.resnet import resnet101 as resnet from src.config import config3 as config from src.dataset import create_dataset3 as create_dataset else: from src.resnet import se_resnet50 as resnet from src.config import config4 as config from src.dataset import create_dataset4 as create_dataset if __name__ == '__main__': target = args_opt.device_target ckpt_save_dir = config.save_checkpoint_path # init context context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False) if args_opt.run_distribute: if target == "Ascend": device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id, enable_auto_mixed_precision=True) context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) if args_opt.net == "resnet50" or args_opt.net == "se-resnet50": auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160]) else: auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313]) init() # GPU target else: init("nccl") context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) if args_opt.net == "resnet50": auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160]) ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/" # create dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1, batch_size=config.batch_size, target=target) step_size = dataset.get_dataset_size() # define net net = resnet(class_num=config.class_num) if args_opt.parameter_server: net.set_param_ps() # init weight if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) else: for _, cell in net.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), cell.weight.shape, cell.weight.dtype) if isinstance(cell, nn.Dense): cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), cell.weight.shape, cell.weight.dtype) # init lr if args_opt.net == "resnet50" or args_opt.net == "se-resnet50": lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode=config.lr_decay_mode) else: lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size, config.pretrain_epoch_size * step_size) lr = Tensor(lr) # define opt decayed_params = [] no_decayed_params = [] for param in net.trainable_params(): if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: decayed_params.append(param) else: no_decayed_params.append(param) group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay}, {'params': no_decayed_params}, {'order_params': net.trainable_params()}] opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale) # define loss, model if target == "Ascend": if args_opt.dataset == "imagenet2012": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor, num_classes=config.class_num) else: loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, amp_level="O2", keep_batchnorm_fp32=False) else: # GPU target if args_opt.dataset == "imagenet2012": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False, smooth_factor=config.label_smooth_factor, num_classes=config.class_num) else: loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False, num_classes=config.class_num) if args_opt.net == "resnet101" or args_opt.net == "resnet50": opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay, config.loss_scale) loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) # Mixed precision model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, amp_level="O2", keep_batchnorm_fp32=True) else: ## fp32 training opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) # define callbacks time_cb = TimeMonitor(data_size=step_size) loss_cb = LossMonitor() cb = [time_cb, loss_cb] if config.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb] # train model model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb, dataset_sink_mode=(not args_opt.parameter_server))