# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import mindspore.dataset as ds from mindspore.dataset.text import JiebaTokenizer from mindspore.dataset.text import JiebaMode, to_str DATA_FILE = "../data/dataset/testJiebaDataset/3.txt" DATA_ALL_FILE = "../data/dataset/testJiebaDataset/*" HMM_FILE = "../data/dataset/jiebadict/hmm_model.utf8" MP_FILE = "../data/dataset/jiebadict/jieba.dict.utf8" def test_jieba_1(): """Test jieba tokenizer with MP mode""" data = ds.TextFileDataset(DATA_FILE) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧'] ret = [] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_1_1(): """Test jieba tokenizer with HMM mode""" data = ds.TextFileDataset(DATA_FILE) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.HMM) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['今天', '天气', '太', '好', '了', '我们', '一起', '去', '外面', '玩', '吧'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_1_2(): """Test jieba tokenizer with HMM MIX""" data = ds.TextFileDataset(DATA_FILE) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MIX) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_2(): """Test add_word""" DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt" data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_word("男默女泪") expect = ['男默女泪', '市', '长江大桥'] data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=2) for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_2_1(): """Test add_word with freq""" DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt" data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_word("男默女泪", 10) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=2) expect = ['男默女泪', '市', '长江大桥'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_2_2(): """Test add_word with invalid None Input""" jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) try: jieba_op.add_word(None) except ValueError: pass def test_jieba_2_3(): """Test add_word with freq, the value of freq affects the result of segmentation""" DATA_FILE4 = "../data/dataset/testJiebaDataset/6.txt" data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_word("江大桥", 20000) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=2) expect = ['江州', '市长', '江大桥', '参加', '了', '长江大桥', '的', '通车', '仪式'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_3(): """Test add_dict with dict""" DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt" user_dict = { "男默女泪": 10 } data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_dict(user_dict) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['男默女泪', '市', '长江大桥'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_3_1(): """Test add_dict with dict""" DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt" user_dict = { "男默女泪": 10, "江大桥": 20000 } data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_dict(user_dict) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['男默女泪', '市长', '江大桥'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_4(): DATA_FILE4 = "../data/dataset/testJiebaDataset/3.txt" DICT_FILE = "../data/dataset/testJiebaDataset/user_dict.txt" data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_dict(DICT_FILE) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def test_jieba_4_1(): """Test add dict with invalid file path""" DICT_FILE = "" jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) try: jieba_op.add_dict(DICT_FILE) except ValueError: pass def test_jieba_5(): """Test add dict with file path""" DATA_FILE4 = "../data/dataset/testJiebaDataset/6.txt" data = ds.TextFileDataset(DATA_FILE4) jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP) jieba_op.add_word("江大桥", 20000) data = data.map(input_columns=["text"], operations=jieba_op, num_parallel_workers=1) expect = ['江州', '市长', '江大桥', '参加', '了', '长江大桥', '的', '通车', '仪式'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] def gen(): text = np.array("今天天气太好了我们一起去外面玩吧".encode("UTF8"), dtype='S') yield text, def pytoken_op(input_data): te = str(to_str(input_data)) tokens = [] tokens.append(te[:5].encode("UTF8")) tokens.append(te[5:10].encode("UTF8")) tokens.append(te[10:].encode("UTF8")) return np.array(tokens, dtype='S') def test_jieba_6(): data = ds.GeneratorDataset(gen, column_names=["text"]) data = data.map(input_columns=["text"], operations=pytoken_op, num_parallel_workers=1) expect = ['今天天气太', '好了我们一', '起去外面玩吧'] for i in data.create_dict_iterator(): ret = to_str(i["text"]) for index, item in enumerate(ret): assert item == expect[index] if __name__ == "__main__": test_jieba_1() test_jieba_1_1() test_jieba_1_2() test_jieba_2() test_jieba_2_1() test_jieba_2_2() test_jieba_3() test_jieba_3_1() test_jieba_4() test_jieba_4_1() test_jieba_5() test_jieba_5() test_jieba_6()