# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test model train """ import os import re import tempfile import shutil import pytest from mindspore import dataset as ds from mindspore import nn, Tensor, context from mindspore.nn.metrics import Accuracy from mindspore.nn.optim import Momentum from mindspore.dataset.transforms import c_transforms as C from mindspore.dataset.transforms.vision import c_transforms as CV from mindspore.dataset.transforms.vision import Inter from mindspore.common import dtype as mstype from mindspore.common.initializer import TruncatedNormal from mindspore.ops import operations as P from mindspore.train import Model from mindspore.train.callback import SummaryCollector from tests.summary_utils import SummaryReader def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): """Define LeNet5 network.""" def __init__(self, num_class=10, channel=1): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = conv(channel, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() self.scalar_summary = P.ScalarSummary() self.image_summary = P.ImageSummary() self.histogram_summary = P.HistogramSummary() self.tensor_summary = P.TensorSummary() self.channel = Tensor(channel) def construct(self, data): """define construct.""" self.image_summary('image', data) output = self.conv1(data) self.histogram_summary('histogram', output) output = self.relu(output) self.tensor_summary('tensor', output) output = self.max_pool2d(output) output = self.conv2(output) output = self.relu(output) output = self.max_pool2d(output) output = self.flatten(output) output = self.fc1(output) output = self.relu(output) output = self.fc2(output) output = self.relu(output) output = self.fc3(output) self.scalar_summary('scalar', self.channel) return output def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """create dataset for train or test""" # define dataset mnist_ds = ds.MnistDataset(data_path) resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 rescale_nml = 1 / 0.3081 shift_nml = -1 * 0.1307 / 0.3081 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) rescale_op = CV.Rescale(rescale, shift=0.0) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) # apply DatasetOps mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class TestSummary: """Test summary collector the basic function.""" base_summary_dir = '' mnist_path = '/home/workspace/mindspore_dataset/mnist' @classmethod def setup_class(cls): """Run before test this class.""" cls.base_summary_dir = tempfile.mkdtemp(suffix='summary') @classmethod def teardown_class(cls): """Run after test this class.""" if os.path.exists(cls.base_summary_dir): shutil.rmtree(cls.base_summary_dir) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_summary_ascend(self): """Test summary ascend.""" context.set_context(mode=context.GRAPH_MODE) self._run_network() def _run_network(self, dataset_sink_mode=True): lenet = LeNet5() loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9) model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()}) summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir) summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=1) ds_train = create_dataset(os.path.join(self.mnist_path, "train")) model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode) ds_eval = create_dataset(os.path.join(self.mnist_path, "test")) model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector]) self._check_summary_result(summary_dir) @staticmethod def _check_summary_result(summary_dir): summary_file_path = '' for file in os.listdir(summary_dir): if re.search("_MS", file): summary_file_path = os.path.join(summary_dir, file) break assert not summary_file_path with SummaryReader(summary_file_path) as summary_reader: tags = set() # Read the event that record by SummaryCollector.begin summary_reader.read_event() summary_event = summary_reader.read_event() for value in summary_event.summary.value: tags.add(value.tag) # There will not record input data when dataset sink mode is True expected_tags = ['conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto', 'fc2.weight/auto', 'histogram', 'image', 'scalar', 'tensor'] assert set(expected_tags) == tags