# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ warm up step learning rate. """ from collections import Counter import numpy as np from .linear_warmup import linear_warmup_lr def warmup_step_lr(lr, lr_epochs, steps_per_epoch, warmup_epochs, max_epoch, gamma=0.1): """warmup_step_lr""" base_lr = lr warmup_init_lr = 0 total_steps = int(max_epoch * steps_per_epoch) warmup_steps = int(warmup_epochs * steps_per_epoch) milestones = lr_epochs milestones_steps = [] for milestone in milestones: milestones_step = milestone * steps_per_epoch milestones_steps.append(milestones_step) lr_each_step = [] lr = base_lr milestones_steps_counter = Counter(milestones_steps) for i in range(total_steps): if i < warmup_steps: lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) else: lr = lr * gamma**milestones_steps_counter[i] lr_each_step.append(lr) return np.array(lr_each_step).astype(np.float32) def multi_step_lr(lr, milestones, steps_per_epoch, max_epoch, gamma=0.1): return warmup_step_lr(lr, milestones, steps_per_epoch, 0, max_epoch, gamma=gamma) def step_lr(lr, epoch_size, steps_per_epoch, max_epoch, gamma=0.1): lr_epochs = [] for i in range(1, max_epoch): if i % epoch_size == 0: lr_epochs.append(i) return multi_step_lr(lr, lr_epochs, steps_per_epoch, max_epoch, gamma=gamma)