# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import mindspore.dataset as ds from mindspore import log as logger def test_batch_corner_cases(): def gen(num): for i in range(num): yield (np.array([i]),) def test_repeat_batch(gen_num, repeats, batch_size, drop, res): data1 = ds.GeneratorDataset((lambda: gen(gen_num)), ["num"]).repeat(repeats).batch(batch_size, drop) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) def test_batch_repeat(gen_num, repeats, batch_size, drop, res): data1 = ds.GeneratorDataset((lambda: gen(gen_num)), ["num"]).batch(batch_size, drop).repeat(repeats) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) tst1, tst2, tst3, tst4 = [], [], [], [] # case 1 & 2, where batch_size is greater than the entire epoch, with drop equals to both val test_repeat_batch(gen_num=2, repeats=4, batch_size=7, drop=False, res=tst1) np.testing.assert_array_equal(np.array([[0], [1], [0], [1], [0], [1], [0]]), tst1[0], "\nATTENTION BATCH FAILED\n") np.testing.assert_array_equal(np.array([[1]]), tst1[1], "\nATTENTION TEST BATCH FAILED\n") assert len(tst1) == 2, "\nATTENTION TEST BATCH FAILED\n" test_repeat_batch(gen_num=2, repeats=4, batch_size=5, drop=True, res=tst2) np.testing.assert_array_equal(np.array([[0], [1], [0], [1], [0]]), tst2[0], "\nATTENTION BATCH FAILED\n") assert len(tst2) == 1, "\nATTENTION TEST BATCH FAILED\n" # case 3 & 4, batch before repeat with different drop test_batch_repeat(gen_num=5, repeats=2, batch_size=4, drop=True, res=tst3) np.testing.assert_array_equal(np.array([[0], [1], [2], [3]]), tst3[0], "\nATTENTION BATCH FAILED\n") np.testing.assert_array_equal(tst3[0], tst3[1], "\nATTENTION BATCH FAILED\n") assert len(tst3) == 2, "\nATTENTION BATCH FAILED\n" test_batch_repeat(gen_num=5, repeats=2, batch_size=4, drop=False, res=tst4) np.testing.assert_array_equal(np.array([[0], [1], [2], [3]]), tst4[0], "\nATTENTION BATCH FAILED\n") np.testing.assert_array_equal(tst4[0], tst4[2], "\nATTENTION BATCH FAILED\n") np.testing.assert_array_equal(tst4[1], np.array([[4]]), "\nATTENTION BATCH FAILED\n") np.testing.assert_array_equal(tst4[1], tst4[3], "\nATTENTION BATCH FAILED\n") assert len(tst4) == 4, "\nATTENTION BATCH FAILED\n" # each sub-test in this function is tested twice with exact parameter except that the second test passes each row # to a pyfunc which makes a deep copy of the row def test_variable_size_batch(): def check_res(arr1, arr2): for ind, _ in enumerate(arr1): if not np.array_equal(arr1[ind], np.array(arr2[ind])): return False return len(arr1) == len(arr2) def gen(num): for i in range(num): yield (np.array([i]),) def add_one_by_batch_num(batchInfo): return batchInfo.get_batch_num() + 1 def add_one_by_epoch(batchInfo): return batchInfo.get_epoch_num() + 1 def simple_copy(colList, batchInfo): _ = batchInfo return ([np.copy(arr) for arr in colList],) def test_repeat_batch(gen_num, r, drop, func, res): data1 = ds.GeneratorDataset((lambda: gen(gen_num)), ["num"]).repeat(r).batch(batch_size=func, drop_remainder=drop) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) # same as test_repeat_batch except each row is passed through via a map which makes a copy of each element def test_repeat_batch_with_copy_map(gen_num, r, drop, func): res = [] data1 = ds.GeneratorDataset((lambda: gen(gen_num)), ["num"]).repeat(r) \ .batch(batch_size=func, drop_remainder=drop, input_columns=["num"], per_batch_map=simple_copy) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) return res def test_batch_repeat(gen_num, r, drop, func, res): data1 = ds.GeneratorDataset((lambda: gen(gen_num)), ["num"]).batch(batch_size=func, drop_remainder=drop).repeat( r) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) # same as test_batch_repeat except each row is passed through via a map which makes a copy of each element def test_batch_repeat_with_copy_map(gen_num, r, drop, func): res = [] data1 = ds.GeneratorDataset((lambda: gen(gen_num)), ["num"]) \ .batch(batch_size=func, drop_remainder=drop, input_columns=["num"], per_batch_map=simple_copy).repeat(r) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) return res tst1, tst2, tst3, tst4, tst5, tst6, tst7 = [], [], [], [], [], [], [] # no repeat, simple var size, based on batch_num test_repeat_batch(7, 1, True, add_one_by_batch_num, tst1) assert check_res(tst1, [[[0]], [[1], [2]], [[3], [4], [5]]]), "\nATTENTION VAR BATCH FAILED\n" assert check_res(tst1, test_repeat_batch_with_copy_map(7, 1, True, add_one_by_batch_num)), "\nMAP FAILED\n" test_repeat_batch(9, 1, False, add_one_by_batch_num, tst2) assert check_res(tst2, [[[0]], [[1], [2]], [[3], [4], [5]], [[6], [7], [8]]]), "\nATTENTION VAR BATCH FAILED\n" assert check_res(tst2, test_repeat_batch_with_copy_map(9, 1, False, add_one_by_batch_num)), "\nMAP FAILED\n" # batch after repeat, cross epoch batch test_repeat_batch(7, 2, False, add_one_by_batch_num, tst3) assert check_res(tst3, [[[0]], [[1], [2]], [[3], [4], [5]], [[6], [0], [1], [2]], [[3], [4], [5], [6]]]), "\nATTENTION VAR BATCH FAILED\n" assert check_res(tst3, test_repeat_batch_with_copy_map(7, 2, False, add_one_by_batch_num)), "\nMAP FAILED\n" # repeat after batch, no cross epoch batch, remainder dropped test_batch_repeat(9, 7, True, add_one_by_batch_num, tst4) assert check_res(tst4, [[[0]], [[1], [2]], [[3], [4], [5]]] * 7), "\nATTENTION VAR BATCH FAILED\n" assert check_res(tst4, test_batch_repeat_with_copy_map(9, 7, True, add_one_by_batch_num)), "\nAMAP FAILED\n" # repeat after batch, no cross epoch batch, remainder kept test_batch_repeat(9, 3, False, add_one_by_batch_num, tst5) assert check_res(tst5, [[[0]], [[1], [2]], [[3], [4], [5]], [[6], [7], [8]]] * 3), "\nATTENTION VAR BATCH FAILED\n" assert check_res(tst5, test_batch_repeat_with_copy_map(9, 3, False, add_one_by_batch_num)), "\nMAP FAILED\n" # batch_size based on epoch number, drop test_batch_repeat(4, 4, True, add_one_by_epoch, tst6) assert check_res(tst6, [[[0]], [[1]], [[2]], [[3]], [[0], [1]], [[2], [3]], [[0], [1], [2]], [[0], [1], [2], [3]]]), "\nATTENTION VAR BATCH FAILED\n" assert check_res(tst6, test_batch_repeat_with_copy_map(4, 4, True, add_one_by_epoch)), "\nMAP FAILED\n" # batch_size based on epoch number, no drop test_batch_repeat(4, 4, False, add_one_by_epoch, tst7) assert check_res(tst7, [[[0]], [[1]], [[2]], [[3]], [[0], [1]], [[2], [3]], [[0], [1], [2]], [[3]], [[0], [1], [2], [3]]]), "\nATTENTION VAR BATCH FAILED\n" + str(tst7) assert check_res(tst7, test_batch_repeat_with_copy_map(4, 4, False, add_one_by_epoch)), "\nMAP FAILED\n" def test_basic_batch_map(): def check_res(arr1, arr2): for ind, _ in enumerate(arr1): if not np.array_equal(arr1[ind], np.array(arr2[ind])): return False return len(arr1) == len(arr2) def gen(num): for i in range(num): yield (np.array([i]),) def invert_sign_per_epoch(colList, batchInfo): return ([np.copy(((-1) ** batchInfo.get_epoch_num()) * arr) for arr in colList],) def invert_sign_per_batch(colList, batchInfo): return ([np.copy(((-1) ** batchInfo.get_batch_num()) * arr) for arr in colList],) def batch_map_config(num, r, batch_size, func, res): data1 = ds.GeneratorDataset((lambda: gen(num)), ["num"]) \ .batch(batch_size=batch_size, input_columns=["num"], per_batch_map=func).repeat(r) for item in data1.create_dict_iterator(num_epochs=1): res.append(item["num"]) tst1, tst2, = [], [] batch_map_config(4, 2, 2, invert_sign_per_epoch, tst1) assert check_res(tst1, [[[0], [1]], [[2], [3]], [[0], [-1]], [[-2], [-3]]]), "\nATTENTION MAP BATCH FAILED\n" + str( tst1) # each batch, the sign of a row is changed, test map is corrected performed according to its batch_num batch_map_config(4, 2, 2, invert_sign_per_batch, tst2) assert check_res(tst2, [[[0], [1]], [[-2], [-3]], [[0], [1]], [[-2], [-3]]]), "\nATTENTION MAP BATCH FAILED\n" + str(tst2) def test_batch_multi_col_map(): def check_res(arr1, arr2): for ind, _ in enumerate(arr1): if not np.array_equal(arr1[ind], np.array(arr2[ind])): return False return len(arr1) == len(arr2) def gen(num): for i in range(num): yield (np.array([i]), np.array([i ** 2])) def col1_col2_add_num(col1, col2, batchInfo): _ = batchInfo return ([[np.copy(arr + 100) for arr in col1], [np.copy(arr + 300) for arr in col2]]) def invert_sign_per_batch(colList, batchInfo): return ([np.copy(((-1) ** batchInfo.get_batch_num()) * arr) for arr in colList],) def invert_sign_per_batch_multi_col(col1, col2, batchInfo): return ([np.copy(((-1) ** batchInfo.get_batch_num()) * arr) for arr in col1], [np.copy(((-1) ** batchInfo.get_batch_num()) * arr) for arr in col2]) def batch_map_config(num, r, batch_size, func, col_names, res): data1 = ds.GeneratorDataset((lambda: gen(num)), ["num", "num_square"]) \ .batch(batch_size=batch_size, input_columns=col_names, per_batch_map=func).repeat(r) for item in data1.create_dict_iterator(num_epochs=1): res.append(np.array([item["num"], item["num_square"]])) tst1, tst2, tst3, tst4 = [], [], [], [] batch_map_config(4, 2, 2, invert_sign_per_batch, ["num_square"], tst1) assert check_res(tst1, [[[[0], [1]], [[0], [1]]], [[[2], [3]], [[-4], [-9]]], [[[0], [1]], [[0], [1]]], [[[2], [3]], [[-4], [-9]]]]), "\nATTENTION MAP BATCH FAILED\n" + str(tst1) batch_map_config(4, 2, 2, invert_sign_per_batch_multi_col, ["num", "num_square"], tst2) assert check_res(tst2, [[[[0], [1]], [[0], [1]]], [[[-2], [-3]], [[-4], [-9]]], [[[0], [1]], [[0], [1]]], [[[-2], [-3]], [[-4], [-9]]]]), "\nATTENTION MAP BATCH FAILED\n" + str(tst2) # the two tests below verify the order of the map. # num_square column adds 100, num column adds 300. batch_map_config(4, 3, 2, col1_col2_add_num, ["num_square", "num"], tst3) assert check_res(tst3, [[[[300], [301]], [[100], [101]]], [[[302], [303]], [[104], [109]]]] * 3), "\nATTENTION MAP BATCH FAILED\n" + str(tst3) # num column adds 100, num_square column adds 300. batch_map_config(4, 3, 2, col1_col2_add_num, ["num", "num_square"], tst4) assert check_res(tst4, [[[[100], [101]], [[300], [301]]], [[[102], [103]], [[304], [309]]]] * 3), "\nATTENTION MAP BATCH FAILED\n" + str(tst4) def test_var_batch_multi_col_map(): def check_res(arr1, arr2): for ind, _ in enumerate(arr1): if not np.array_equal(arr1[ind], np.array(arr2[ind])): return False return len(arr1) == len(arr2) # gen 3 columns # first column: 0, 3, 6, 9 ... ... # second column:1, 4, 7, 10 ... ... # third column: 2, 5, 8, 11 ... ... def gen_3_cols(num): for i in range(num): yield (np.array([i * 3]), np.array([i * 3 + 1]), np.array([i * 3 + 2])) # first epoch batch_size per batch: 1, 2 ,3 ... ... # second epoch batch_size per batch: 2, 4, 6 ... ... # third epoch batch_size per batch: 3, 6 ,9 ... ... def batch_func(batchInfo): return (batchInfo.get_batch_num() + 1) * (batchInfo.get_epoch_num() + 1) # multiply first col by batch_num, multiply second col by -batch_num def map_func(col1, col2, batchInfo): return ([np.copy((1 + batchInfo.get_batch_num()) * arr) for arr in col1], [np.copy(-(1 + batchInfo.get_batch_num()) * arr) for arr in col2]) def batch_map_config(num, r, fbatch, fmap, col_names, res): data1 = ds.GeneratorDataset((lambda: gen_3_cols(num)), ["col1", "col2", "col3"]) \ .batch(batch_size=fbatch, input_columns=col_names, per_batch_map=fmap).repeat(r) for item in data1.create_dict_iterator(num_epochs=1): res.append(np.array([item["col1"], item["col2"], item["col3"]])) tst1 = [] tst1_res = [[[[0]], [[-1]], [[2]]], [[[6], [12]], [[-8], [-14]], [[5], [8]]], [[[27], [36], [45]], [[-30], [-39], [-48]], [[11], [14], [17]]], [[[72], [84], [96], [108]], [[-76], [-88], [-100], [-112]], [[20], [23], [26], [29]]]] batch_map_config(10, 1, batch_func, map_func, ["col1", "col2"], tst1) assert check_res(tst1, tst1_res), "test_var_batch_multi_col_map FAILED" def test_var_batch_var_resize(): # fake resize image according to its batch number, if it's 5-th batch, resize to (5^2, 5^2) = (25, 25) def np_psedo_resize(col, batchInfo): s = (batchInfo.get_batch_num() + 1) ** 2 return ([np.copy(c[0:s, 0:s, :]) for c in col],) def add_one(batchInfo): return batchInfo.get_batch_num() + 1 data1 = ds.ImageFolderDataset("../data/dataset/testPK/data/", num_parallel_workers=4, decode=True) data1 = data1.batch(batch_size=add_one, drop_remainder=True, input_columns=["image"], per_batch_map=np_psedo_resize) # i-th batch has shape [i, i^2, i^2, 3] i = 1 for item in data1.create_dict_iterator(num_epochs=1): assert item["image"].shape == (i, i ** 2, i ** 2, 3), "\ntest_var_batch_var_resize FAILED\n" i += 1 def test_exception(): def gen(num): for i in range(num): yield (np.array([i]),) def bad_batch_size(batchInfo): raise StopIteration #return batchInfo.get_batch_num() def bad_map_func(col, batchInfo): raise StopIteration #return (col,) data1 = ds.GeneratorDataset((lambda: gen(100)), ["num"]).batch(bad_batch_size) try: for _ in data1.create_dict_iterator(num_epochs=1): pass assert False except RuntimeError: pass data2 = ds.GeneratorDataset((lambda: gen(100)), ["num"]).batch(4, input_columns=["num"], per_batch_map=bad_map_func) try: for _ in data2.create_dict_iterator(num_epochs=1): pass assert False except RuntimeError: pass if __name__ == '__main__': logger.info("Running test_var_batch_map.py test_batch_corner_cases() function") test_batch_corner_cases() logger.info("Running test_var_batch_map.py test_variable_size_batch() function") test_variable_size_batch() logger.info("Running test_var_batch_map.py test_basic_batch_map() function") test_basic_batch_map() logger.info("Running test_var_batch_map.py test_batch_multi_col_map() function") test_batch_multi_col_map() logger.info("Running test_var_batch_map.py tesgit t_var_batch_multi_col_map() function") test_var_batch_multi_col_map() logger.info("Running test_var_batch_map.py test_var_batch_var_resize() function") test_var_batch_var_resize() logger.info("Running test_var_batch_map.py test_exception() function") test_exception()