# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomApply op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.py_transforms as py_vision from mindspore import log as logger from util import visualize_list, config_get_set_seed, \ config_get_set_num_parallel_workers, save_and_check_md5 GENERATE_GOLDEN = False DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_random_apply_op(plot=False): """ Test RandomApply in python transformations """ logger.info("test_random_apply_op") # define map operations transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)] transforms1 = [ py_vision.Decode(), py_vision.RandomApply(transforms_list, prob=0.6), py_vision.ToTensor() ] transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1) transforms2 = [ py_vision.Decode(), py_vision.ToTensor() ] transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(input_columns=["image"], operations=transform1) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=transform2) image_apply = [] image_original = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)): image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_apply.append(image1) image_original.append(image2) if plot: visualize_list(image_original, image_apply) def test_random_apply_md5(): """ Test RandomApply op with md5 check """ logger.info("test_random_apply_md5") original_seed = config_get_set_seed(10) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # define map operations transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)] transforms = [ py_vision.Decode(), # Note: using default value "prob=0.5" py_vision.RandomApply(transforms_list), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data = data.map(input_columns=["image"], operations=transform) # check results with md5 comparison filename = "random_apply_01_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore configuration ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers((original_num_parallel_workers)) def test_random_apply_exception_random_crop_badinput(): """ Test RandomApply: test invalid input for one of the transform functions, expected to raise error """ logger.info("test_random_apply_exception_random_crop_badinput") original_seed = config_get_set_seed(200) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # define map operations transforms_list = [py_vision.Resize([32, 32]), py_vision.RandomCrop(100), # crop size > image size py_vision.RandomRotation(30)] transforms = [ py_vision.Decode(), py_vision.RandomApply(transforms_list, prob=0.6), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data = data.map(input_columns=["image"], operations=transform) try: _ = data.create_dict_iterator(num_epochs=1).get_next() except RuntimeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Crop size" in str(e) # Restore configuration ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) if __name__ == '__main__': test_random_apply_op(plot=True) test_random_apply_md5() test_random_apply_exception_random_crop_badinput()