# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test adam """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _executor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Adam, AdamWeightDecay, AdamWeightDecayDynamicLR, Lamb from mindspore.ops import operations as P from mindspore import context class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() self.fc1 = nn.Dense(128, 768, activation='relu') self.fc2 = nn.Dense(128, 768, activation='relu') self.fc3 = nn.Dense(128, 768, activation='relu') self.fc4 = nn.Dense(768, 768, activation='relu') self.relu4 = nn.ReLU() self.relu5 = nn.ReLU() self.transpose = P.Transpose() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() def construct(self, x): q = self.fc1(x) k = self.fc2(x) v = self.fc3(x) k = self.transpose(k, (1, 0)) c = self.relu4(self.matmul1(q, k)) s = self.relu5(self.matmul2(c, v)) s = self.fc4(s) return s def test_AdamWeightDecayDynamicLR(): """ test_AdamWeightDecayDynamicLR """ context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True) inputs = Tensor(np.ones([32, 128]).astype(np.float32)) label = Tensor(np.zeros([32, 768]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = AdamWeightDecayDynamicLR(net.trainable_params(), decay_steps=20, learning_rate=0.1) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _executor.compile(train_network, inputs, label) def test_AdamWeightDecay(): """ test_AdamWeightDecayDynamicLR """ context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True) inputs = Tensor(np.ones([32, 128]).astype(np.float32)) label = Tensor(np.zeros([32, 768]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _executor.compile(train_network, inputs, label) def test_lamb_compile(): """ test_Lamb_compile """ context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True) inputs = Tensor(np.ones([32, 128]).astype(np.float32)) label = Tensor(np.zeros([32, 768]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Lamb(net.trainable_params(), decay_steps=10) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _executor.compile(train_network, inputs, label) def test_edge_case(): """ test_edge_case """ context.set_auto_parallel_context(enable_parallel_optimizer=True) net = Net() with pytest.raises(RuntimeError): context.set_auto_parallel_context(parallel_mode="stand_alone") Lamb(net.trainable_params(), decay_steps=10) with pytest.raises(RuntimeError): Adam(net.trainable_params(), learning_rate=0.1) with pytest.raises(RuntimeError): context.set_auto_parallel_context(device_num=16) Lamb(net.trainable_params(), decay_steps=10)