# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore.ops import operations as P from mindspore.nn.optim.momentum import Momentum from mindspore.common.initializer import TruncatedNormal from mindspore.communication.management import init from mindspore.train.model import Model, ParallelMode from mindspore import context import re import mindspore.ops.functional as F from mindspore.nn.loss.loss import _Loss from mindspore.parallel._utils import _reset_op_id as resset_op_id from mindspore.common.api import _executor from mindspore.parallel import set_algo_parameters from mindspore.parallel import _cost_model_context as cost_model_context context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(device_id=0) context.set_context(enable_loop_sink=False) init() def weight_variable(shape, factor=0.1): return TruncatedNormal(0.02) def _conv3x3(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): """Get a conv2d layer with 3x3 kernel size.""" init_value = weight_variable((out_channels, in_channels, 3, 3)) return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value) def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): """Get a conv2d layer with 1x1 kernel size.""" init_value = weight_variable((out_channels, in_channels, 1, 1)) return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value) def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): """Get a conv2d layer with 7x7 kernel size.""" init_value = weight_variable((out_channels, in_channels, 7, 7)) return nn.Conv2d(in_channels, out_channels, kernel_size=7, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value) def _fused_bn(channels, momentum=0.9): """Get a fused batchnorm""" init_weight = weight_variable((channels,)) init_bias = weight_variable((channels,)) return nn.BatchNorm2d(channels, momentum=momentum) class ResidualBlock(nn.Cell): expansion = 4 def __init__(self, in_channels, out_channels, stride=1, momentum=0.9): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion self.conv1 = _conv1x1(in_channels, out_chls, stride=1) self.bn1 = _fused_bn(out_chls, momentum=momentum) self.conv2 = _conv3x3(out_chls, out_chls, stride=stride) self.bn2 = _fused_bn(out_chls, momentum=momentum) self.conv3 = _conv1x1(out_chls, out_channels, stride=1) self.bn3 = _fused_bn(out_channels, momentum=momentum) self.relu = P.ReLU() self.downsample = (in_channels != out_channels) self.stride = stride if self.downsample: self.conv_down_sample = _conv1x1(in_channels, out_channels, stride=stride) self.bn_down_sample = _fused_bn(out_channels, momentum=momentum) elif self.stride != 1: self.maxpool_down = nn.MaxPool2d(kernel_size=1, stride=2, pad_mode='same') self.add = P.TensorAdd() def construct(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample: identity = self.conv_down_sample(identity) identity = self.bn_down_sample(identity) elif self.stride != 1: identity = self.maxpool_down(identity) out = self.add(out, identity) out = self.relu(out) return out class ResNet(nn.Cell): def __init__(self, block, layer_nums, in_channels, out_channels, strides=[1, 2, 2, 2], num_classes=100): super(ResNet, self).__init__() if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: raise ValueError("the length of " "layer_num, inchannel, outchannel list must be 4!") self.conv1 = _conv7x7(3, 64, stride=2) self.bn1 = _fused_bn(64) self.relu = P.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same') self.layer1 = self._make_layer(block, layer_nums[0], in_channel=in_channels[0], out_channel=out_channels[0], stride=strides[0]) self.layer2 = self._make_layer(block, layer_nums[1], in_channel=in_channels[1], out_channel=out_channels[1], stride=strides[1]) self.layer3 = self._make_layer(block, layer_nums[2], in_channel=in_channels[2], out_channel=out_channels[2], stride=strides[2]) self.layer4 = self._make_layer(block, layer_nums[3], in_channel=in_channels[3], out_channel=out_channels[3], stride=strides[3]) self.mean = P.ReduceMean(keep_dims=True) self.end_point = nn.Dense(2048, num_classes, has_bias=True, weight_init=weight_variable((num_classes, 2048)), bias_init=weight_variable((num_classes,))).add_flags_recursive(fp16=True) self.squeeze = P.Squeeze() self.cast = P.Cast() def _make_layer(self, block, layer_num, in_channel, out_channel, stride): layers = [] down_sample = False if stride != 1 or in_channel != out_channel: down_sample = True resblk = block(in_channel, out_channel, stride=1) layers.append(resblk) for _ in range(1, layer_num - 1): resblk = block(out_channel, out_channel, stride=1) layers.append(resblk) resblk = block(out_channel, out_channel, stride=stride) layers.append(resblk) return nn.SequentialCell(layers) def construct(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) c1 = self.maxpool(x) c2 = self.layer1(c1) c3 = self.layer2(c2) c4 = self.layer3(c3) c5 = self.layer4(c4) out = self.mean(c5, (2, 3)) out = self.squeeze(out) out = self.end_point(out) return out def resnet50(class_num=10): return ResNet(ResidualBlock, [3, 4, 6, 3], [64, 256, 512, 1024], [256, 512, 1024, 2048], [2, 2, 2, 1], class_num) class SoftmaxCrossEntropyExpand(_Loss): def __init__(self, sparse=False): super(SoftmaxCrossEntropyExpand, self).__init__() self.exp = P.Exp() self.sum = P.ReduceSum(keep_dims=True) self.onehot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.div = P.Div() self.log = P.Log() self.sum_cross_entropy = P.ReduceSum(keep_dims=False) self.mul = P.Mul() self.mul2 = P.Mul() self.cast = P.Cast() self.mean = P.ReduceMean(keep_dims=False).add_prim_attr("cross_batch", True) self.sparse = sparse self.max = P.ReduceMax(keep_dims=True) self.sub = P.Sub() self.cast1 = P.Cast() def construct(self, logit, label): logit = self.cast1(logit, mstype.float32) logit_max = self.max(logit) exp = self.exp(self.sub(logit, logit_max)) exp_sum = self.sum(exp, -1) softmax_result = self.div(exp, exp_sum) if self.sparse: label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) softmax_result_log = self.log(softmax_result) loss = self.sum_cross_entropy((self.mul(softmax_result_log, label)), -1) loss = self.mul2(F.scalar_to_array(-1.0), loss) loss = self.mean(loss, -1) return loss class DatasetLenet(): def __init__(self, predict, label, length=3): self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 def get_dataset_size(self): return 32 def get_repeat_count(self): return 1 def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): dev_num = 8 context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num) set_algo_parameters(elementwise_op_strategy_follow=True) resset_op_id() np.random.seed(6) input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32) label_np = np.zeros([batch_size]).astype(np.int32) for i in range(0, batch_size): label_np[i] = i % num_classes dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1) net = resnet50(num_classes) loss = SoftmaxCrossEntropyExpand(sparse=True) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9) model = Model(net, loss_fn=loss, optimizer=opt) model.train(5, dataset, dataset_sink_mode=False) strategies = _executor._get_strategy(model._train_network) for (k, v) in strategies.items(): if re.search('Conv2D-op', k) is not None: assert v[0][0] == dev_num elif re.search('MatMul-op', k) is not None: assert v == [[dev_num, 1], [1, 1]] elif re.search('ReduceSum-op', k) is not None: assert v == [[dev_num, 1]] allreduce_fusion_dict = _executor._get_allreduce_fusion(model._train_network) print(allreduce_fusion_dict) return allreduce_fusion_dict def train_32k_8p_fusion1(epoch_size=3, batch_size=32, num_classes=32768): # 1048576 #131072 #32768 #8192 cost_model_context.set_cost_model_context(costmodel_gamma=0.001, costmodel_beta=400.0) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5) allreduce_fusion_dict = test_train_32k_8p(epoch_size, batch_size, num_classes) expect_dict = {'end_point.bias': 2, 'end_point.weight': 2, 'layer4.2.bn3.beta': 2, 'layer4.2.bn3.gamma': 2, 'layer4.2.conv3.weight': 2, 'layer4.2.bn2.beta': 2, 'layer4.2.bn2.gamma': 2, 'layer4.2.conv2.weight': 2, 'layer4.2.bn1.beta': 2, 'layer4.2.bn1.gamma': 2, 'layer4.2.conv1.weight': 2, 'layer4.1.bn3.beta': 2, 'layer4.1.bn3.gamma': 2, 'layer4.1.conv3.weight': 2, 'layer4.1.bn2.beta': 2, 'layer4.1.bn2.gamma': 2, 'layer4.1.conv2.weight': 2, 'layer4.1.bn1.beta': 2, 'layer4.1.bn1.gamma': 2, 'layer4.1.conv1.weight': 2, 'layer4.0.bn_down_sample.beta': 2, 'layer4.0.bn_down_sample.gamma': 2, 'layer4.0.conv_down_sample.weight': 2, 'layer4.0.bn3.beta': 2, 'layer4.0.bn3.gamma': 2, 'layer4.0.conv3.weight': 2, 'layer4.0.bn2.beta': 2, 'layer4.0.bn2.gamma': 2, 'layer4.0.conv2.weight': 2, 'layer4.0.bn1.beta': 2, 'layer4.0.bn1.gamma': 2, 'layer4.0.conv1.weight': 2, 'layer3.5.bn3.beta': 2, 'layer3.5.bn3.gamma': 2, 'layer3.5.conv3.weight': 2, 'layer3.5.bn2.beta': 2, 'layer3.5.bn2.gamma': 2, 'layer3.5.conv2.weight': 2, 'layer3.5.bn1.beta': 2, 'layer3.5.bn1.gamma': 2, 'layer3.5.conv1.weight': 2, 'layer3.4.bn3.beta': 2, 'layer3.4.bn3.gamma': 2, 'layer3.4.conv3.weight': 2, 'layer3.4.bn2.beta': 2, 'layer3.4.bn2.gamma': 2, 'layer3.4.conv2.weight': 2, 'layer3.4.bn1.beta': 2, 'layer3.4.bn1.gamma': 2, 'layer3.4.conv1.weight': 2, 'layer3.3.bn3.beta': 2, 'layer3.3.bn3.gamma': 2, 'layer3.3.conv3.weight': 2, 'layer3.3.bn2.beta': 2, 'layer3.3.bn2.gamma': 2, 'layer3.3.conv2.weight': 2, 'layer3.3.bn1.beta': 2, 'layer3.3.bn1.gamma': 2, 'layer3.3.conv1.weight': 2, 'layer3.2.bn3.beta': 2, 'layer3.2.bn3.gamma': 2, 'layer3.2.conv3.weight': 2, 'layer3.2.bn2.beta': 2, 'layer3.2.bn2.gamma': 2, 'layer3.2.conv2.weight': 2, 'layer3.2.bn1.beta': 2, 'layer3.2.bn1.gamma': 2, 'layer3.2.conv1.weight': 2, 'layer3.1.bn3.beta': 2, 'layer3.1.bn3.gamma': 2, 'layer3.1.conv3.weight': 2, 'layer3.1.bn2.beta': 2, 'layer3.1.bn2.gamma': 2, 'layer3.1.conv2.weight': 2, 'layer3.1.bn1.beta': 2, 'layer3.1.bn1.gamma': 2, 'layer3.1.conv1.weight': 2, 'layer3.0.bn_down_sample.beta': 2, 'layer3.0.bn_down_sample.gamma': 2, 'layer3.0.conv_down_sample.weight': 2, 'layer3.0.bn3.beta': 2, 'layer3.0.bn3.gamma': 2, 'layer3.0.conv3.weight': 2, 'layer3.0.bn2.beta': 2, 'layer3.0.bn2.gamma': 2, 'layer3.0.conv2.weight': 2, 'layer3.0.bn1.beta': 2, 'layer3.0.bn1.gamma': 2, 'layer3.0.conv1.weight': 2, 'layer2.3.bn3.beta': 2, 'layer2.3.bn3.gamma': 2, 'layer2.3.conv3.weight': 2, 'layer2.3.bn2.beta': 2, 'layer2.3.bn2.gamma': 2, 'layer2.3.conv2.weight': 2, 'layer2.3.bn1.beta': 2, 'layer2.3.bn1.gamma': 2, 'layer2.3.conv1.weight': 2, 'layer2.2.bn3.beta': 2, 'layer2.2.bn3.gamma': 2, 'layer2.2.conv3.weight': 2, 'layer2.2.bn2.beta': 2, 'layer2.2.bn2.gamma': 2, 'layer2.2.conv2.weight': 2, 'layer2.2.bn1.beta': 2, 'layer2.2.bn1.gamma': 2, 'layer2.2.conv1.weight': 2, 'layer2.1.bn3.beta': 2, 'layer2.1.bn3.gamma': 2, 'layer2.1.conv3.weight': 2, 'layer2.1.bn2.beta': 2, 'layer2.1.bn2.gamma': 2, 'layer2.1.conv2.weight': 2, 'layer2.1.bn1.beta': 2, 'layer2.1.bn1.gamma': 2, 'layer2.1.conv1.weight': 2, 'layer2.0.bn_down_sample.beta': 2, 'layer2.0.bn_down_sample.gamma': 2, 'layer2.0.conv_down_sample.weight': 2, 'layer2.0.bn3.beta': 2, 'layer2.0.bn3.gamma': 2, 'layer2.0.conv3.weight': 2, 'layer2.0.bn2.beta': 2, 'layer2.0.bn2.gamma': 2, 'layer2.0.conv2.weight': 2, 'layer2.0.bn1.beta': 2, 'layer2.0.bn1.gamma': 2, 'layer2.0.conv1.weight': 2, 'layer1.2.bn3.beta': 2, 'layer1.2.bn3.gamma': 2, 'layer1.2.conv3.weight': 2, 'layer1.2.bn2.beta': 2, 'layer1.2.bn2.gamma': 2, 'layer1.2.conv2.weight': 2, 'layer1.2.bn1.beta': 2, 'layer1.2.bn1.gamma': 2, 'layer1.2.conv1.weight': 2, 'layer1.1.bn3.beta': 2, 'layer1.1.bn3.gamma': 2, 'layer1.1.conv3.weight': 2, 'layer1.1.bn2.beta': 2, 'layer1.1.bn2.gamma': 2, 'layer1.1.conv2.weight': 2, 'layer1.1.bn1.beta': 2, 'layer1.1.bn1.gamma': 2, 'layer1.1.conv1.weight': 2, 'layer1.0.bn_down_sample.beta': 2, 'layer1.0.bn_down_sample.gamma': 2, 'layer1.0.conv_down_sample.weight': 2, 'layer1.0.bn3.beta': 2, 'layer1.0.bn3.gamma': 2, 'layer1.0.conv3.weight': 2, 'layer1.0.bn2.beta': 2, 'layer1.0.bn2.gamma': 2, 'layer1.0.conv2.weight': 2, 'layer1.0.bn1.beta': 2, 'layer1.0.bn1.gamma': 2, 'layer1.0.conv1.weight': 2, 'bn1.beta': 1, 'bn1.gamma': 1, 'conv1.weight': 1} assert (allreduce_fusion_dict == expect_dict) cost_model_context.reset_cost_model_context() def train_32k_8p_fusion2(epoch_size=3, batch_size=32, num_classes=32768): # 1048576 #131072 #32768 #8192 cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001) cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015) allreduce_fusion_dict = test_train_32k_8p(epoch_size, batch_size, num_classes) expect_dict = {'end_point.bias': 2, 'end_point.weight': 2, 'layer4.2.bn3.beta': 2, 'layer4.2.bn3.gamma': 2, 'layer4.2.conv3.weight': 2, 'layer4.2.bn2.beta': 2, 'layer4.2.bn2.gamma': 2, 'layer4.2.conv2.weight': 2, 'layer4.2.bn1.beta': 2, 'layer4.2.bn1.gamma': 2, 'layer4.2.conv1.weight': 2, 'layer4.1.bn3.beta': 2, 'layer4.1.bn3.gamma': 2, 'layer4.1.conv3.weight': 2, 'layer4.1.bn2.beta': 2, 'layer4.1.bn2.gamma': 2, 'layer4.1.conv2.weight': 2, 'layer4.1.bn1.beta': 2, 'layer4.1.bn1.gamma': 2, 'layer4.1.conv1.weight': 2, 'layer4.0.bn_down_sample.beta': 2, 'layer4.0.bn_down_sample.gamma': 2, 'layer4.0.conv_down_sample.weight': 2, 'layer4.0.bn3.beta': 2, 'layer4.0.bn3.gamma': 2, 'layer4.0.conv3.weight': 2, 'layer4.0.bn2.beta': 2, 'layer4.0.bn2.gamma': 2, 'layer4.0.conv2.weight': 2, 'layer4.0.bn1.beta': 2, 'layer4.0.bn1.gamma': 2, 'layer4.0.conv1.weight': 2, 'layer3.5.bn3.beta': 2, 'layer3.5.bn3.gamma': 2, 'layer3.5.conv3.weight': 2, 'layer3.5.bn2.beta': 2, 'layer3.5.bn2.gamma': 2, 'layer3.5.conv2.weight': 2, 'layer3.5.bn1.beta': 2, 'layer3.5.bn1.gamma': 2, 'layer3.5.conv1.weight': 2, 'layer3.4.bn3.beta': 2, 'layer3.4.bn3.gamma': 2, 'layer3.4.conv3.weight': 2, 'layer3.4.bn2.beta': 2, 'layer3.4.bn2.gamma': 2, 'layer3.4.conv2.weight': 2, 'layer3.4.bn1.beta': 2, 'layer3.4.bn1.gamma': 2, 'layer3.4.conv1.weight': 2, 'layer3.3.bn3.beta': 2, 'layer3.3.bn3.gamma': 2, 'layer3.3.conv3.weight': 2, 'layer3.3.bn2.beta': 2, 'layer3.3.bn2.gamma': 2, 'layer3.3.conv2.weight': 2, 'layer3.3.bn1.beta': 2, 'layer3.3.bn1.gamma': 2, 'layer3.3.conv1.weight': 2, 'layer3.2.bn3.beta': 2, 'layer3.2.bn3.gamma': 2, 'layer3.2.conv3.weight': 2, 'layer3.2.bn2.beta': 2, 'layer3.2.bn2.gamma': 2, 'layer3.2.conv2.weight': 2, 'layer3.2.bn1.beta': 2, 'layer3.2.bn1.gamma': 2, 'layer3.2.conv1.weight': 2, 'layer3.1.bn3.beta': 2, 'layer3.1.bn3.gamma': 2, 'layer3.1.conv3.weight': 2, 'layer3.1.bn2.beta': 2, 'layer3.1.bn2.gamma': 2, 'layer3.1.conv2.weight': 2, 'layer3.1.bn1.beta': 2, 'layer3.1.bn1.gamma': 2, 'layer3.1.conv1.weight': 2, 'layer3.0.bn_down_sample.beta': 2, 'layer3.0.bn_down_sample.gamma': 2, 'layer3.0.conv_down_sample.weight': 2, 'layer3.0.bn3.beta': 2, 'layer3.0.bn3.gamma': 2, 'layer3.0.conv3.weight': 2, 'layer3.0.bn2.beta': 2, 'layer3.0.bn2.gamma': 2, 'layer3.0.conv2.weight': 2, 'layer3.0.bn1.beta': 2, 'layer3.0.bn1.gamma': 2, 'layer3.0.conv1.weight': 2, 'layer2.3.bn3.beta': 2, 'layer2.3.bn3.gamma': 2, 'layer2.3.conv3.weight': 2, 'layer2.3.bn2.beta': 2, 'layer2.3.bn2.gamma': 2, 'layer2.3.conv2.weight': 2, 'layer2.3.bn1.beta': 2, 'layer2.3.bn1.gamma': 2, 'layer2.3.conv1.weight': 2, 'layer2.2.bn3.beta': 2, 'layer2.2.bn3.gamma': 2, 'layer2.2.conv3.weight': 2, 'layer2.2.bn2.beta': 2, 'layer2.2.bn2.gamma': 2, 'layer2.2.conv2.weight': 2, 'layer2.2.bn1.beta': 2, 'layer2.2.bn1.gamma': 2, 'layer2.2.conv1.weight': 2, 'layer2.1.bn3.beta': 2, 'layer2.1.bn3.gamma': 2, 'layer2.1.conv3.weight': 2, 'layer2.1.bn2.beta': 2, 'layer2.1.bn2.gamma': 2, 'layer2.1.conv2.weight': 2, 'layer2.1.bn1.beta': 2, 'layer2.1.bn1.gamma': 2, 'layer2.1.conv1.weight': 2, 'layer2.0.bn_down_sample.beta': 2, 'layer2.0.bn_down_sample.gamma': 2, 'layer2.0.conv_down_sample.weight': 2, 'layer2.0.bn3.beta': 2, 'layer2.0.bn3.gamma': 2, 'layer2.0.conv3.weight': 2, 'layer2.0.bn2.beta': 2, 'layer2.0.bn2.gamma': 2, 'layer2.0.conv2.weight': 2, 'layer2.0.bn1.beta': 2, 'layer2.0.bn1.gamma': 2, 'layer2.0.conv1.weight': 2, 'layer1.2.bn3.beta': 2, 'layer1.2.bn3.gamma': 2, 'layer1.2.conv3.weight': 2, 'layer1.2.bn2.beta': 2, 'layer1.2.bn2.gamma': 2, 'layer1.2.conv2.weight': 2, 'layer1.2.bn1.beta': 2, 'layer1.2.bn1.gamma': 2, 'layer1.2.conv1.weight': 2, 'layer1.1.bn3.beta': 2, 'layer1.1.bn3.gamma': 2, 'layer1.1.conv3.weight': 2, 'layer1.1.bn2.beta': 2, 'layer1.1.bn2.gamma': 2, 'layer1.1.conv2.weight': 2, 'layer1.1.bn1.beta': 2, 'layer1.1.bn1.gamma': 2, 'layer1.1.conv1.weight': 2, 'layer1.0.bn_down_sample.beta': 2, 'layer1.0.bn_down_sample.gamma': 2, 'layer1.0.conv_down_sample.weight': 2, 'layer1.0.bn3.beta': 2, 'layer1.0.bn3.gamma': 2, 'layer1.0.conv3.weight': 2, 'layer1.0.bn2.beta': 2, 'layer1.0.bn2.gamma': 2, 'layer1.0.conv2.weight': 1, 'layer1.0.bn1.beta': 1, 'layer1.0.bn1.gamma': 1, 'layer1.0.conv1.weight': 1, 'bn1.beta': 1, 'bn1.gamma': 1, 'conv1.weight': 1} assert (allreduce_fusion_dict == expect_dict) cost_model_context.reset_cost_model_context() def test_train_64k_8p(epoch_size=3, batch_size=32, num_classes=65536): # 1048576 #131072 #32768 #8192 dev_num = 8 context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num) cost_model_context.set_cost_model_context(costmodel_gamma=0.001, costmodel_beta=400.0) set_algo_parameters(elementwise_op_strategy_follow=True) resset_op_id() np.random.seed(6) input_np = np.ones([batch_size, 3, 224, 224]).astype(np.float32) label_np = np.zeros([batch_size]).astype(np.int32) for i in range(0, batch_size): label_np[i] = i % num_classes dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1) net = resnet50(num_classes) loss = SoftmaxCrossEntropyExpand(sparse=True) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9) model = Model(net, loss_fn=loss, optimizer=opt) model.train(5, dataset, dataset_sink_mode=False) strategies = _executor._get_strategy(model._train_network) for (k, v) in strategies.items(): if re.search('Conv2D-op', k) is not None: assert v[0][0] == dev_num elif re.search('MatMul-op', k) is not None: assert v == [[1, 1], [dev_num, 1]] elif re.search('ReduceSum-op', k) is not None: assert v == [[1, dev_num]]