# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import time import argparse import random import numpy as np from mindspore import context from mindspore import Tensor from mindspore import nn from mindspore.nn.optim.momentum import Momentum from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.loss.loss import _Loss from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.common import dtype as mstype from mindspore.train.model import Model, ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset.engine as de from mindspore.communication.management import init, get_group_size, get_rank from src.dataset import create_dataset from src.lr_generator import get_lr from src.config import config_gpu from src.mobilenetV3 import mobilenet_v3_large random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') parser.add_argument('--device_target', type=str, default="GPU", help='run device_target') args_opt = parser.parse_args() if args_opt.device_target == "GPU": context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False) init("nccl") context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) else: raise ValueError("Unsupported device_target.") class CrossEntropyWithLabelSmooth(_Loss): """ CrossEntropyWith LabelSmooth. Args: smooth_factor (float): smooth factor, default=0. num_classes (int): num classes Returns: None. Examples: >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000) """ def __init__(self, smooth_factor=0., num_classes=1000): super(CrossEntropyWithLabelSmooth, self).__init__() self.onehot = P.OneHot() self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean(False) self.cast = P.Cast() def construct(self, logit, label): one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value) out_loss = self.ce(logit, one_hot_label) out_loss = self.mean(out_loss, 0) return out_loss class Monitor(Callback): """ Monitor loss and time. Args: lr_init (numpy array): train lr Returns: None Examples: >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) """ def __init__(self, lr_init=None): super(Monitor, self).__init__() self.lr_init = lr_init self.lr_init_len = len(lr_init) def epoch_begin(self, run_context): self.losses = [] self.epoch_time = time.time() def epoch_end(self, run_context): cb_params = run_context.original_args() epoch_mseconds = (time.time() - self.epoch_time) * 1000 per_step_mseconds = epoch_mseconds / cb_params.batch_num print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, per_step_mseconds, np.mean(self.losses))) def step_begin(self, run_context): self.step_time = time.time() def step_end(self, run_context): cb_params = run_context.original_args() step_mseconds = (time.time() - self.step_time) * 1000 step_loss = cb_params.net_outputs if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): step_loss = step_loss[0] if isinstance(step_loss, Tensor): step_loss = np.mean(step_loss.asnumpy()) self.losses.append(step_loss) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format( cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1])) if __name__ == '__main__': if args_opt.device_target == "GPU": # train on gpu print("train args: ", args_opt) print("cfg: ", config_gpu) # define net net = mobilenet_v3_large(num_classes=config_gpu.num_classes) # define loss if config_gpu.label_smooth > 0: loss = CrossEntropyWithLabelSmooth( smooth_factor=config_gpu.label_smooth, num_classes=config_gpu.num_classes) else: loss = SoftmaxCrossEntropyWithLogits( is_grad=False, sparse=True, reduction='mean') # define dataset epoch_size = config_gpu.epoch_size dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config_gpu, device_target=args_opt.device_target, repeat_num=1, batch_size=config_gpu.batch_size) step_size = dataset.get_dataset_size() # resume if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) # define optimizer loss_scale = FixedLossScaleManager( config_gpu.loss_scale, drop_overflow_update=False) lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config_gpu.lr, warmup_epochs=config_gpu.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size)) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum, config_gpu.weight_decay, config_gpu.loss_scale) # define model model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale) cb = [Monitor(lr_init=lr.asnumpy())] ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/" if config_gpu.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_gpu.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix="mobilenetV3", directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb] # begine train model.train(epoch_size, dataset, callbacks=cb)