# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing Pad op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as c_vision import mindspore.dataset.transforms.vision.py_transforms as py_vision from mindspore import log as logger from util import diff_mse DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_pad_op(): """ Test Pad op """ logger.info("test_random_color_jitter_op") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() pad_op = c_vision.Pad((100, 100, 100, 100)) ctrans = [decode_op, pad_op, ] data1 = data1.map(input_columns=["image"], operations=ctrans) # Second dataset transforms = [ py_vision.Decode(), py_vision.Pad(100), py_vision.ToTensor(), ] transform = py_vision.ComposeOp(transforms) data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=transform()) for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): c_image = item1["image"] py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) logger.info("shape of c_image: {}".format(c_image.shape)) logger.info("shape of py_image: {}".format(py_image.shape)) logger.info("dtype of c_image: {}".format(c_image.dtype)) logger.info("dtype of py_image: {}".format(py_image.dtype)) mse = diff_mse(c_image, py_image) logger.info("mse is {}".format(mse)) assert mse < 0.01 def test_pad_grayscale(): """ Tests that the pad works for grayscale images """ # Note: image.transpose performs channel swap to allow py transforms to # work with c transforms transforms = [ py_vision.Decode(), py_vision.Grayscale(1), py_vision.ToTensor(), (lambda image: (image.transpose(1, 2, 0) * 255).astype(np.uint8)) ] transform = py_vision.ComposeOp(transforms) data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(input_columns=["image"], operations=transform()) # if input is grayscale, the output dimensions should be single channel pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20)) data1 = data1.map(input_columns=["image"], operations=pad_gray) dataset_shape_1 = [] for item1 in data1.create_dict_iterator(): c_image = item1["image"] dataset_shape_1.append(c_image.shape) # Dataset for comparison data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() # we use the same padding logic ctrans = [decode_op, pad_gray] dataset_shape_2 = [] data2 = data2.map(input_columns=["image"], operations=ctrans) for item2 in data2.create_dict_iterator(): c_image = item2["image"] dataset_shape_2.append(c_image.shape) for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2): # validate that the first two dimensions are the same # we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale assert shape1[0:1] == shape2[0:1] if __name__ == "__main__": test_pad_op() test_pad_grayscale()