# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ #################pre_train bert example on zh-wiki######################## python run_pretrain.py """ import os import argparse import mindspore.communication.management as D from mindspore import context from mindspore.train.model import Model from mindspore.train.parallel_utils import ParallelMode from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.model_zoo.Bert_NEZHA import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecayDynamicLR from dataset import create_bert_dataset from config import cfg, bert_net_cfg _current_dir = os.path.dirname(os.path.realpath(__file__)) class LossCallBack(Callback): """ Monitor the loss in training. If the loss in NAN or INF terminating training. Note: if per_print_times is 0 do not print loss. Args: per_print_times (int): Print loss every times. Default: 1. """ def __init__(self, per_print_times=1): super(LossCallBack, self).__init__() if not isinstance(per_print_times, int) or per_print_times < 0: raise ValueError("print_step must be int and >= 0") self._per_print_times = per_print_times def step_end(self, run_context): cb_params = run_context.original_args() with open("./loss.log", "a+") as f: f.write("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num, str(cb_params.net_outputs))) f.write('\n') def run_pretrain(): """pre-train bert_clue""" parser = argparse.ArgumentParser(description='bert pre_training') parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.") parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.") parser.add_argument("--enable_lossscale", type=str, default="true", help="Use lossscale or not, default is not.") parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.") parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.") parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.") parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path") parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, " "default is 1000.") parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.") parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path") parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) context.set_context(reserve_class_name_in_scope=False) if args_opt.distribute == "true": device_num = args_opt.device_num context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=device_num) D.init() rank = args_opt.device_id % device_num else: rank = 0 device_num = 1 ds = create_bert_dataset(args_opt.epoch_size, device_num, rank, args_opt.do_shuffle, args_opt.enable_data_sink, args_opt.data_sink_steps, args_opt.data_dir, args_opt.schema_dir) netwithloss = BertNetworkWithLoss(bert_net_cfg, True) if cfg.optimizer == 'Lamb': optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * ds.get_repeat_count(), start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate, power=cfg.Lamb.power, warmup_steps=cfg.Lamb.warmup_steps, weight_decay=cfg.Lamb.weight_decay, eps=cfg.Lamb.eps) elif cfg.optimizer == 'Momentum': optimizer = Momentum(netwithloss.trainable_params(), learning_rate=cfg.Momentum.learning_rate, momentum=cfg.Momentum.momentum) elif cfg.optimizer == 'AdamWeightDecayDynamicLR': optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * ds.get_repeat_count(), learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate, end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate, power=cfg.AdamWeightDecayDynamicLR.power, weight_decay=cfg.AdamWeightDecayDynamicLR.weight_decay, eps=cfg.AdamWeightDecayDynamicLR.eps, warmup_steps=cfg.AdamWeightDecayDynamicLR.warmup_steps) else: raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecayDynamicLR]". format(cfg.optimizer)) callback = [LossCallBack()] if args_opt.enable_save_ckpt == "true": config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps, keep_checkpoint_max=args_opt.save_checkpoint_num) ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert', config=config_ck) callback.append(ckpoint_cb) if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(netwithloss, param_dict) if args_opt.enable_lossscale == "true": update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value, scale_factor=cfg.scale_factor, scale_window=cfg.scale_window) netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, scale_update_cell=update_cell) else: netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer) model = Model(netwithgrads) model.train(ds.get_repeat_count(), ds, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true")) if __name__ == '__main__': run_pretrain()