# MobileNetV2 Example ## Description This is an example of training MobileNetV2 with ImageNet2012 dataset in MindSpore. ## Requirements * Install [MindSpore](https://www.mindspore.cn/install/en). * Download the dataset [ImageNet2012]. > Unzip the ImageNet2012 dataset to any path you want and the folder structure should be as follows: > ``` > . > ├── train # train dataset > └── val # infer dataset > ``` ## Example structure ``` shell . ├── config.py # parameter configuration ├── dataset.py # data preprocessing ├── eval.py # infer script ├── launch.py # launcher for distributed training ├── lr_generator.py # generate learning rate for each step ├── run_infer.sh # launch infering ├── run_train.sh # launch training └── train.py # train script ``` ## Parameter configuration Parameters for both training and inference can be set in 'config.py'. ``` "num_classes": 1000, # dataset class num "image_height": 224, # image height "image_width": 224, # image width "batch_size": 256, # training or infering batch size "epoch_size": 200, # total training epochs, including warmup_epochs "warmup_epochs": 4, # warmup epochs "lr": 0.4, # base learning rate "momentum": 0.9, # momentum "weight_decay": 4e-5, # weight decay "loss_scale": 1024, # loss scale "save_checkpoint": True, # whether save checkpoint "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints "keep_checkpoint_max": 200, # only keep the last keep_checkpoint_max checkpoint "save_checkpoint_path": "./checkpoint" # path to save checkpoint ``` ## Running the example ### Train #### Usage Usage: sh run_train.sh [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] #### Launch ``` # training example sh run_train.sh 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet ``` #### Result Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings. ``` epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100] epoch time: 140522.500, per step time: 224.836, avg loss: 5.258 epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200] epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 ``` ### Infer #### Usage Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH] #### Launch ``` # infer example sh run_infer.sh ~/imagenet ~/train/mobilenet-200_625.ckpt ``` > checkpoint can be produced in training process. #### Result Inference result will be stored in the example path, you can find result like the followings in `val.log`. ``` result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt ```