# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train or eval dataset. """ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.c_transforms as C2 def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1 batch_size(int): the batch size of dataset. Default: 32 Returns: dataset """ device_num = int(os.getenv("DEVICE_NUM")) rank_id = int(os.getenv("RANK_ID")) if device_num == 1: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) else: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=device_num, shard_id=rank_id) image_size = 224 mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] std = [0.229 * 255, 0.224 * 255, 0.225 * 255] # define map operations if do_train: trans = [ C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), C.RandomHorizontalFlip(prob=0.5), C.Normalize(mean=mean, std=std), C.HWC2CHW() ] else: trans = [ C.Decode(), C.Resize((256, 256)), C.CenterCrop(image_size), C.Normalize(mean=mean, std=std), C.HWC2CHW() ] type_cast_op = C2.TypeCast(mstype.int32) ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans) ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) # apply dataset repeat operation ds = ds.repeat(repeat_num) return ds