# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import os import time import argparse import random import numpy as np from mindspore import context from mindspore import Tensor from mindspore import nn from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.nn.optim.momentum import Momentum from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.loss.loss import _Loss from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.common import dtype as mstype from mindspore.train.model import Model, ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset.engine as de from mindspore.communication.management import init, get_group_size from src.dataset import create_dataset from src.lr_generator import get_lr from src.config import config_gpu, config_ascend from src.mobilenetV3 import mobilenet_v3_large random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') parser.add_argument('--platform', type=str, default=None, help='run platform') args_opt = parser.parse_args() if args_opt.platform == "Ascend": device_id = int(os.getenv('DEVICE_ID')) rank_id = int(os.getenv('RANK_ID')) rank_size = int(os.getenv('RANK_SIZE')) run_distribute = rank_size > 1 device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) elif args_opt.platform == "GPU": context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False) else: raise ValueError("Unsupport platform.") class CrossEntropyWithLabelSmooth(_Loss): """ CrossEntropyWith LabelSmooth. Args: smooth_factor (float): smooth factor, default=0. num_classes (int): num classes Returns: None. Examples: >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000) """ def __init__(self, smooth_factor=0., num_classes=1000): super(CrossEntropyWithLabelSmooth, self).__init__() self.onehot = P.OneHot() self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean(False) self.cast = P.Cast() def construct(self, logit, label): one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value) out_loss = self.ce(logit, one_hot_label) out_loss = self.mean(out_loss, 0) return out_loss class Monitor(Callback): """ Monitor loss and time. Args: lr_init (numpy array): train lr Returns: None Examples: >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) """ def __init__(self, lr_init=None): super(Monitor, self).__init__() self.lr_init = lr_init self.lr_init_len = len(lr_init) def epoch_begin(self, run_context): self.losses = [] self.epoch_time = time.time() def epoch_end(self, run_context): cb_params = run_context.original_args() epoch_mseconds = (time.time() - self.epoch_time) * 1000 per_step_mseconds = epoch_mseconds / cb_params.batch_num print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, per_step_mseconds, np.mean(self.losses))) def step_begin(self, run_context): self.step_time = time.time() def step_end(self, run_context): cb_params = run_context.original_args() step_mseconds = (time.time() - self.step_time) * 1000 step_loss = cb_params.net_outputs if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): step_loss = step_loss[0] if isinstance(step_loss, Tensor): step_loss = np.mean(step_loss.asnumpy()) self.losses.append(step_loss) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format( cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1])) if __name__ == '__main__': if args_opt.platform == "GPU": # train on gpu print("train args: ", args_opt, "\ncfg: ", config_gpu) init('nccl') context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size()) # define net net = mobilenet_v3_large(num_classes=config_gpu.num_classes) # define loss if config_gpu.label_smooth > 0: loss = CrossEntropyWithLabelSmooth( smooth_factor=config_gpu.label_smooth, num_classes=config_gpu.num_classes) else: loss = SoftmaxCrossEntropyWithLogits( is_grad=False, sparse=True, reduction='mean') # define dataset epoch_size = config_gpu.epoch_size dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config_gpu, platform=args_opt.platform, repeat_num=epoch_size, batch_size=config_gpu.batch_size) step_size = dataset.get_dataset_size() # resume if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) # define optimizer loss_scale = FixedLossScaleManager( config_gpu.loss_scale, drop_overflow_update=False) lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config_gpu.lr, warmup_epochs=config_gpu.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size)) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum, config_gpu.weight_decay, config_gpu.loss_scale) # define model model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale) cb = [Monitor(lr_init=lr.asnumpy())] if config_gpu.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_gpu.keep_checkpoint_max) ckpt_cb = ModelCheckpoint( prefix="mobilenetV3", directory=config_gpu.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] # begine train model.train(epoch_size, dataset, callbacks=cb) elif args_opt.platform == "Ascend": # train on ascend print("train args: ", args_opt, "\ncfg: ", config_ascend, "\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) if run_distribute: context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL, parameter_broadcast=True, mirror_mean=True) auto_parallel_context().set_all_reduce_fusion_split_indices([140]) init() epoch_size = config_ascend.epoch_size net = mobilenet_v3_large(num_classes=config_ascend.num_classes) net.to_float(mstype.float16) for _, cell in net.cells_and_names(): if isinstance(cell, nn.Dense): cell.to_float(mstype.float32) if config_ascend.label_smooth > 0: loss = CrossEntropyWithLabelSmooth( smooth_factor=config_ascend.label_smooth, num_classes=config.num_classes) else: loss = SoftmaxCrossEntropyWithLogits( is_grad=False, sparse=True, reduction='mean') dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config_ascend, platform=args_opt.platform, repeat_num=epoch_size, batch_size=config_ascend.batch_size) step_size = dataset.get_dataset_size() if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) loss_scale = FixedLossScaleManager( config_ascend.loss_scale, drop_overflow_update=False) lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config_ascend.lr, warmup_epochs=config_ascend.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size)) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_ascend.momentum, config_ascend.weight_decay, config_ascend.loss_scale) model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale) cb = None if rank_id == 0: cb = [Monitor(lr_init=lr.asnumpy())] if config_ascend.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_ascend.keep_checkpoint_max) ckpt_cb = ModelCheckpoint( prefix="mobilenetV3", directory=config_ascend.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] model.train(epoch_size, dataset, callbacks=cb) else: raise Exception