# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import os import argparse import random import numpy as np from dataset import create_dataset from lr_generator import warmup_cosine_annealing_lr from config import config from mindspore import context from mindspore import Tensor from mindspore.model_zoo.resnet import resnet101 from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model, ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.loss_scale_manager import FixedLossScaleManager import mindspore.dataset.engine as de from mindspore.communication.management import init import mindspore.nn as nn import mindspore.common.initializer as weight_init from crossentropy import CrossEntropy random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') args_opt = parser.parse_args() device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) if __name__ == '__main__': if not args_opt.do_eval and args_opt.run_distribute: context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, parameter_broadcast=True) auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313]) init() epoch_size = config.epoch_size net = resnet101(class_num=config.class_num) # weight init for _, cell in net.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), cell.weight.default_input.shape(), cell.weight.default_input.dtype()).to_tensor() if isinstance(cell, nn.Dense): cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), cell.weight.default_input.shape(), cell.weight.default_input.dtype()).to_tensor() if not config.label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) if args_opt.do_train: dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=epoch_size, batch_size=config.batch_size) step_size = dataset.get_dataset_size() loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) # learning rate strategy with cosine lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size)) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay, config.loss_scale) model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False, loss_scale_manager=loss_scale, metrics={'acc'}) time_cb = TimeMonitor(data_size=step_size) loss_cb = LossMonitor() cb = [time_cb, loss_cb] if config.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] model.train(epoch_size, dataset, callbacks=cb)