# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train or eval dataset. """ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.c_transforms as C2 def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1. batch_size(int): the batch size of dataset. Default: 32. Returns: dataset """ if device_target == "Ascend": rank_size = int(os.getenv("RANK_SIZE", '1')) rank_id = int(os.getenv("RANK_ID", '0')) if rank_size == 1: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) else: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=rank_size, shard_id=rank_id) elif device_target == "GPU": if do_train: from mindspore.communication.management import get_rank, get_group_size ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=get_group_size(), shard_id=get_rank()) else: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) else: raise ValueError("Unsupported device_target.") resize_height = config.image_height resize_width = config.image_width buffer_size = 1000 # define map operations decode_op = C.Decode() resize_crop_op = C.RandomCropDecodeResize(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333)) horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5) resize_op = C.Resize((256, 256)) center_crop = C.CenterCrop(resize_width) rescale_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255]) change_swap_op = C.HWC2CHW() if do_train: trans = [resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op] else: trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op] type_cast_op = C2.TypeCast(mstype.int32) ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8) ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8) # apply shuffle operations ds = ds.shuffle(buffer_size=buffer_size) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) # apply dataset repeat operation ds = ds.repeat(repeat_num) return ds