# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ######################## eval lenet example ######################## eval lenet according to model file: python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt """ import os import argparse import mindspore.nn as nn from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.train.quant import quant from src.dataset import create_dataset from src.config import mnist_cfg as cfg from src.lenet_fusion import LeNet5 as LeNet5Fusion parser = argparse.ArgumentParser(description='MindSpore MNIST Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./MNIST_Data", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') args = parser.parse_args() if __name__ == "__main__": context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1) step_size = ds_eval.get_dataset_size() # define fusion network network = LeNet5Fusion(cfg.num_classes) # convert fusion netwrok to quantization aware network network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000) # define loss net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") # define network optimization net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) # call back and monitor model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # load quantization aware network checkpoint param_dict = load_checkpoint(args.ckpt_path, model_type="quant") load_param_into_net(network, param_dict) print("============== Starting Testing ==============") acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode) print("============== {} ==============".format(acc))