# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Warpctc training""" import os import math as m import random import argparse import numpy as np import mindspore.nn as nn from mindspore import context from mindspore import dataset as de from mindspore.train.model import Model from mindspore.context import ParallelMode from mindspore.nn.wrap import WithLossCell from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint from mindspore.communication.management import init, get_group_size, get_rank from src.loss import CTCLoss, CTCLossV2 from src.config import config as cf from src.dataset import create_dataset from src.warpctc import StackedRNN, StackedRNNForGPU from src.warpctc_for_train import TrainOneStepCellWithGradClip from src.lr_schedule import get_lr random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description="Warpctc training") parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.") parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None') parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='Running platform, choose from Ascend, GPU, and default is Ascend.') parser.set_defaults(run_distribute=False) args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False) if args_opt.platform == 'Ascend': device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) if __name__ == '__main__': lr_scale = 1 if args_opt.run_distribute: if args_opt.platform == 'Ascend': init() lr_scale = 1 device_num = int(os.environ.get("RANK_SIZE")) rank = int(os.environ.get("RANK_ID")) else: init('nccl') lr_scale = 0.5 device_num = get_group_size() rank = get_rank() context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) else: device_num = 1 rank = 0 max_captcha_digits = cf.max_captcha_digits input_size = m.ceil(cf.captcha_height / 64) * 64 * 3 # create dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, batch_size=cf.batch_size, num_shards=device_num, shard_id=rank, device_target=args_opt.platform) step_size = dataset.get_dataset_size() # define lr lr_init = cf.learning_rate if not args_opt.run_distribute else cf.learning_rate * device_num * lr_scale lr = get_lr(cf.epoch_size, step_size, lr_init) if args_opt.platform == 'Ascend': loss = CTCLoss(max_sequence_length=cf.captcha_width, max_label_length=max_captcha_digits, batch_size=cf.batch_size) net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size) opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum) else: loss = CTCLossV2(max_sequence_length=cf.captcha_width, batch_size=cf.batch_size) net = StackedRNNForGPU(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size) opt = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum) net = WithLossCell(net, loss) net = TrainOneStepCellWithGradClip(net, opt).set_train() # define model model = Model(net) # define callbacks callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)] if cf.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=cf.save_checkpoint_steps, keep_checkpoint_max=cf.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix="warpctc", directory=cf.save_checkpoint_path + str(rank), config=config_ck) callbacks.append(ckpt_cb) model.train(cf.epoch_size, dataset, callbacks=callbacks)