# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ######################## train alexnet example ######################## train alexnet and get network model files(.ckpt) : python train.py --data_path /YourDataPath """ import argparse from config import alexnet_cfg as cfg from dataset import create_dataset from generator_lr import get_lr import mindspore.nn as nn from mindspore import context from mindspore import Tensor from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.model_zoo.alexnet import AlexNet from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\ path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) network = AlexNet(cfg.num_classes) loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, cfg.save_checkpoint_steps)) opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test print("============== Starting Training ==============") ds_train = create_dataset(args.data_path, cfg.batch_size, cfg.epoch_size) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], dataset_sink_mode=args.dataset_sink_mode)