# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train FasterRcnn and get checkpoint files.""" import os import argparse import random import numpy as np import mindspore.common.dtype as mstype from mindspore import context, Tensor from mindspore.communication.management import init from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train import Model, ParallelMode from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn import SGD import mindspore.dataset.engine as de from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet from src.config import config from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset from src.lr_schedule import dynamic_lr random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description="FasterRcnn training") parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create " "Mindrecord, default is false.") parser.add_argument("--run_distribute", type=bool, default=False, help="Run distribute, default is false.") parser.add_argument("--do_train", type=bool, default=True, help="Do train or not, default is true.") parser.add_argument("--do_eval", type=bool, default=False, help="Do eval or not, default is false.") parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") parser.add_argument("--pre_trained", type=str, default="", help="Pretrain file path.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default is 0.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=args_opt.device_id) if __name__ == '__main__': if not args_opt.do_eval and args_opt.run_distribute: rank = args_opt.rank_id device_num = args_opt.device_num context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, parameter_broadcast=True) init() else: rank = 0 device_num = 1 print("Start create dataset!") # It will generate mindrecord file in args_opt.mindrecord_dir, # and the file name is FasterRcnn.mindrecord0, 1, ... file_num. prefix = "FasterRcnn.mindrecord" mindrecord_dir = config.mindrecord_dir mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") if not os.path.exists(mindrecord_file): if not os.path.isdir(mindrecord_dir): os.makedirs(mindrecord_dir) if args_opt.dataset == "coco": if os.path.isdir(config.coco_root): print("Create Mindrecord.") data_to_mindrecord_byte_image("coco", True, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("coco_root not exits.") else: if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): print("Create Mindrecord.") data_to_mindrecord_byte_image("other", True, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("IMAGE_DIR or ANNO_PATH not exits.") if not args_opt.only_create_dataset: loss_scale = float(config.loss_scale) # When create MindDataset, using the fitst mindrecord file, such as FasterRcnn.mindrecord0. dataset = create_fasterrcnn_dataset(mindrecord_file, repeat_num=config.epoch_size, batch_size=config.batch_size, device_num=device_num, rank_id=rank) dataset_size = dataset.get_dataset_size() print("Create dataset done!") net = Faster_Rcnn_Resnet50(config=config) net = net.set_train() load_path = args_opt.pre_trained if load_path != "": param_dict = load_checkpoint(load_path) for item in list(param_dict.keys()): if not item.startswith('backbone'): param_dict.pop(item) load_param_into_net(net, param_dict) loss = LossNet() lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32) opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, weight_decay=config.weight_decay, loss_scale=config.loss_scale) net_with_loss = WithLossCell(net, loss) if args_opt.run_distribute: net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True, mean=True, degree=device_num) else: net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale) time_cb = TimeMonitor(data_size=dataset_size) loss_cb = LossCallBack() cb = [time_cb, loss_cb] if config.save_checkpoint: ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * dataset_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix='faster_rcnn', directory=config.save_checkpoint_path, config=ckptconfig) cb += [ckpoint_cb] model = Model(net) model.train(config.epoch_size, dataset, callbacks=cb)