# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ eval. """ import os import argparse import random import numpy as np from dataset import create_dataset from config import config from mindspore import context from mindspore.model_zoo.resnet import resnet101 from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.train.model import Model, ParallelMode from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset.engine as de from mindspore.communication.management import init from crossentropy import CrossEntropy random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.') parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') args_opt = parser.parse_args() device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) if __name__ == '__main__': if not args_opt.do_eval and args_opt.run_distribute: context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, parameter_broadcast=True) auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313]) init() epoch_size = config.epoch_size net = resnet101(class_num=config.class_num) if not config.label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) if args_opt.do_eval: dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) step_size = dataset.get_dataset_size() if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path)