From ffe8b5d3ecb02bfca90b933858356cabca2348cc Mon Sep 17 00:00:00 2001 From: lvliang Date: Mon, 13 Apr 2020 19:58:50 +0800 Subject: [PATCH] pynative-add-op-supported --- mindspore/ccsrc/pre_activate/common/helper.cc | 57 +++++ mindspore/ccsrc/pre_activate/common/helper.h | 5 + .../pass/const_input_to_attr_registry.cc | 34 +++ .../pass/const_input_to_attr_registry.h | 2 +- .../pass/convert_const_input_to_attr.cc | 32 --- .../pass/convert_const_input_to_attr.h | 5 +- .../convert_const_input_to_tensor_input.cc | 58 +---- mindspore/ccsrc/pynative/pynative_execute.cc | 5 +- mindspore/ccsrc/session/ascend_session.cc | 12 +- mindspore/ccsrc/session/ascend_session.h | 6 +- mindspore/ccsrc/session/gpu_session.cc | 12 +- mindspore/ccsrc/session/gpu_session.h | 6 +- mindspore/ccsrc/session/session_basic.cc | 204 ++++++++++-------- mindspore/ccsrc/session/session_basic.h | 12 +- 14 files changed, 240 insertions(+), 210 deletions(-) diff --git a/mindspore/ccsrc/pre_activate/common/helper.cc b/mindspore/ccsrc/pre_activate/common/helper.cc index e5f0fafbe..3b7d95a6f 100644 --- a/mindspore/ccsrc/pre_activate/common/helper.cc +++ b/mindspore/ccsrc/pre_activate/common/helper.cc @@ -28,6 +28,7 @@ namespace mindspore { namespace opt { +constexpr size_t kType32Len = 4; std::vector Convert2Int(const std::vector &v) { std::vector result; (void)std::transform(v.begin(), v.end(), std::back_inserter(result), SizeToInt); @@ -264,6 +265,62 @@ void CreateMultipleOutputsOfAnfNode(const FuncGraphPtr &func_graph, const AnfNod } } +template +tensor::TensorPtr CreateTensorWithValueTuple(const ValueTuplePtr &value_tuple_ptr, const TypePtr &type_ptr, + size_t data_length) { + MS_EXCEPTION_IF_NULL(value_tuple_ptr); + MS_EXCEPTION_IF_NULL(type_ptr); + std::vector values; + for (const auto &v : value_tuple_ptr->value()) { + MS_EXCEPTION_IF_NULL(v); + if (v->isa()) { + ScalarPtr scalar = v->cast(); + values.push_back(GetValue(scalar)); + } else { + MS_LOG(WARNING) << "The value " << v << "of tuple is not a scalar"; + return nullptr; + } + } + std::vector tensor_shape = {SizeToInt(values.size())}; + tensor::TensorPtr tensor = std::make_shared(type_ptr->type_id(), tensor_shape); + MS_EXCEPTION_IF_NULL(tensor); + tensor::DeviceInfo device_info{kOpFormat_DEFAULT, type_ptr}; + tensor->set_device_info(device_info); + auto data_ptr = tensor->data_c(true); + MS_EXCEPTION_IF_NULL(data_ptr); + auto elem_num = values.size() * data_length; + auto ret_code = memcpy_s(data_ptr, static_cast(tensor->data().nbytes()), values.data(), elem_num); + if (ret_code != 0) { + MS_LOG(EXCEPTION) << "Failed to copy data into Tensor."; + } + return tensor; +} + +tensor::TensorPtr CreateTupleTensor(const ValueTuplePtr &value_tuple) { + MS_EXCEPTION_IF_NULL(value_tuple); + tensor::TensorPtr tensor = nullptr; + ValuePtr v = *(value_tuple->value().begin()); + MS_EXCEPTION_IF_NULL(v); + // Currently we only deal with the scalar tuple + if (!v->isa()) { + MS_LOG(WARNING) << "The value " << v << "of tuple is not a scalar"; + return nullptr; + } + ScalarPtr scalar = v->cast(); + MS_EXCEPTION_IF_NULL(scalar); + if (scalar->isa()) { + tensor = CreateTensorWithValueTuple(value_tuple, kInt32, kType32Len); + } else if (scalar->isa()) { + tensor = CreateTensorWithValueTuple(value_tuple, kFloat32, kType32Len); + } else { + auto type = scalar->type(); + auto type_str = (type == nullptr) ? "nullptr" : type->ToString(); + MS_LOG(ERROR) << "Invalid scalar type: " << type_str; + return nullptr; + } + return tensor; +} + bool IsNopNode(const AnfNodePtr &node) { auto context_ptr = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(context_ptr); diff --git a/mindspore/ccsrc/pre_activate/common/helper.h b/mindspore/ccsrc/pre_activate/common/helper.h index 4f30a935a..8d174a1ad 100644 --- a/mindspore/ccsrc/pre_activate/common/helper.h +++ b/mindspore/ccsrc/pre_activate/common/helper.h @@ -135,6 +135,11 @@ void CreateOutputsOfFusedBn3(const FuncGraphPtr &graph, const AnfNodePtr &data_i void CreateMultipleOutputsOfAnfNode(const FuncGraphPtr &kernel_graph, const AnfNodePtr &anf_node_ptr, size_t output_num, std::vector *outputs); +tensor::TensorPtr CreateTensorWithValueTuple(const ValueTuplePtr &value_tuple_ptr, const TypePtr &type_ptr, + size_t data_length); + +tensor::TensorPtr CreateTupleTensor(const ValueTuplePtr &value_tuple); + bool IsNopNode(const AnfNodePtr &node); void HideNopNode(session::KernelGraph *const graph); diff --git a/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc b/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc index 42d373392..88edfd301 100644 --- a/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc +++ b/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc @@ -17,10 +17,44 @@ #include +#include "utils/utils.h" #include "utils/log_adapter.h" +#include "operator/ops.h" namespace mindspore { namespace opt { +ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() { + Register(prim::kPrimCast->name(), {1}); + Register(prim::kPrimConv2DBackpropInput->name(), {2}); + Register(prim::kPrimConv2DBackpropFilter->name(), {2}); + Register(prim::kPrimReshape->name(), {1}); + Register(prim::kPrimReduceMax->name(), {1}); + Register(prim::kPrimReduceMin->name(), {1}); + Register(prim::kPrimReduceSum->name(), {1}); + Register(prim::kPrimReduceMean->name(), {1}); + Register(prim::kPrimGatherV2->name(), {2}); + Register(prim::kPrimTranspose->name(), {1}); + Register(prim::kPrimUnsortedSegmentSum->name(), {2}); + Register(prim::kPrimOneHot->name(), {1}); + Register(kUnsortedSegmentProdOpName, {2}); + Register(kUnsortedSegmentMinOpName, {2}); + Register(kSimpleMeanGradOpName, {1}); + Register(kMeanGradOpName, {1}); + Register(kSliceOpName, {1, 2}); + Register(kSliceGradOpName, {2, 3}); + Register(kTileOpName, {1}); + Register(kScatterNdOpName, {2}); + Register(kStridedSliceAssignOpName, {1, 2, 3}); + Register(kStridedSliceOpName, {1, 2, 3}); + Register(kStridedSliceGradOpName, {1, 2, 3, 4}); + Register(kFlattenGradOpName, {1}); + Register(kExpandDimsOpName, {1}); + Register(kSplitOpName, {0}); + Register(kTopKOpName, {1}); + Register(kSparseApplyAdagradOpName, {2}); + Register(kResizeNearestNeighborGrad, {1}); +} + ConstInputToAttrInfoRegistry &ConstInputToAttrInfoRegistry::Instance() { static ConstInputToAttrInfoRegistry instance; return instance; diff --git a/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.h b/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.h index 48007929f..bd6cac132 100644 --- a/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.h +++ b/mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.h @@ -54,7 +54,7 @@ class ConstInputToAttrInfoRegistry { bool GetRegisterByOpName(const std::string &op_name, ConstInputToAttrInfoRegister *reg) const; private: - ConstInputToAttrInfoRegistry() = default; + ConstInputToAttrInfoRegistry(); ~ConstInputToAttrInfoRegistry() = default; DISABLE_COPY_AND_ASSIGN(ConstInputToAttrInfoRegistry) std::unordered_map op_input_to_attr_map_; diff --git a/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.cc b/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.cc index 2bef0d36c..15d62a164 100644 --- a/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.cc +++ b/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.cc @@ -87,37 +87,5 @@ const AnfNodePtr ConvertConstInputToAttr::Process(const FuncGraphPtr &, const An ConstInputToAttr(cnode, reg.GetConstInputAttrInfo()); return cnode; } - -void ConvertConstInputToAttr::Init() { - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimCast->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimConv2DBackpropInput->name(), {2}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimConv2DBackpropFilter->name(), {2}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimReshape->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimReduceMax->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimReduceMin->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimReduceSum->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimReduceMean->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimGatherV2->name(), {2}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimTranspose->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimUnsortedSegmentSum->name(), {2}); - ConstInputToAttrInfoRegistry::Instance().Register(prim::kPrimOneHot->name(), {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kUnsortedSegmentProdOpName, {2}); - ConstInputToAttrInfoRegistry::Instance().Register(kUnsortedSegmentMinOpName, {2}); - ConstInputToAttrInfoRegistry::Instance().Register(kSimpleMeanGradOpName, {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kMeanGradOpName, {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kSliceOpName, {1, 2}); - ConstInputToAttrInfoRegistry::Instance().Register(kSliceGradOpName, {2, 3}); - ConstInputToAttrInfoRegistry::Instance().Register(kTileOpName, {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kScatterNdOpName, {2}); - ConstInputToAttrInfoRegistry::Instance().Register(kStridedSliceAssignOpName, {1, 2, 3}); - ConstInputToAttrInfoRegistry::Instance().Register(kStridedSliceOpName, {1, 2, 3}); - ConstInputToAttrInfoRegistry::Instance().Register(kStridedSliceGradOpName, {1, 2, 3, 4}); - ConstInputToAttrInfoRegistry::Instance().Register(kFlattenGradOpName, {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kExpandDimsOpName, {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kSplitOpName, {0}); - ConstInputToAttrInfoRegistry::Instance().Register(kTopKOpName, {1}); - ConstInputToAttrInfoRegistry::Instance().Register(kSparseApplyAdagradOpName, {2}); - ConstInputToAttrInfoRegistry::Instance().Register(kResizeNearestNeighborGrad, {1}); -} } // namespace opt } // namespace mindspore diff --git a/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.h b/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.h index 54caa1633..e124ff8cf 100644 --- a/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.h +++ b/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_attr.h @@ -27,14 +27,11 @@ namespace opt { class ConvertConstInputToAttr : public PatternProcessPass { public: explicit ConvertConstInputToAttr(bool multigraph = true) - : PatternProcessPass("convert_const_input_to_attr", multigraph) { - Init(); - } + : PatternProcessPass("convert_const_input_to_attr", multigraph) {} ~ConvertConstInputToAttr() override = default; const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; private: - void Init(); std::unordered_map> op_input_attr_map_; }; } // namespace opt diff --git a/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_tensor_input.cc b/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_tensor_input.cc index 431a67792..56be2e273 100644 --- a/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_tensor_input.cc +++ b/mindspore/ccsrc/pre_activate/pass/convert_const_input_to_tensor_input.cc @@ -19,69 +19,13 @@ #include #include "utils/graph_utils.h" +#include "pre_activate/common/helper.h" #include "session/anf_runtime_algorithm.h" #include "session/kernel_graph.h" namespace mindspore { namespace opt { namespace { -constexpr size_t kType32Len = 4; -template -tensor::TensorPtr CreateTensorWithValueTuple(const ValueTuplePtr &value_tuple_ptr, const TypePtr &type_ptr, - size_t data_length) { - MS_EXCEPTION_IF_NULL(value_tuple_ptr); - MS_EXCEPTION_IF_NULL(type_ptr); - std::vector values; - for (const auto &v : value_tuple_ptr->value()) { - MS_EXCEPTION_IF_NULL(v); - if (v->isa()) { - ScalarPtr scalar = v->cast(); - values.push_back(GetValue(scalar)); - } else { - MS_LOG(WARNING) << "The value " << v << "of tuple is not a scalar"; - return nullptr; - } - } - std::vector tensor_shape = {SizeToInt(values.size())}; - tensor::TensorPtr tensor = std::make_shared(type_ptr->type_id(), tensor_shape); - MS_EXCEPTION_IF_NULL(tensor); - tensor::DeviceInfo device_info{kOpFormat_DEFAULT, type_ptr}; - tensor->set_device_info(device_info); - auto data_ptr = tensor->data_c(true); - MS_EXCEPTION_IF_NULL(data_ptr); - auto elem_num = values.size() * data_length; - auto ret_code = memcpy_s(data_ptr, static_cast(tensor->data().nbytes()), values.data(), elem_num); - if (ret_code != 0) { - MS_LOG(EXCEPTION) << "Failed to copy data into Tensor."; - } - return tensor; -} - -tensor::TensorPtr CreateTupleTensor(const ValueTuplePtr &value_tuple) { - MS_EXCEPTION_IF_NULL(value_tuple); - tensor::TensorPtr tensor = nullptr; - ValuePtr v = *(value_tuple->value().begin()); - MS_EXCEPTION_IF_NULL(v); - // Currently we only deal with the scalar tuple - if (!v->isa()) { - MS_LOG(WARNING) << "The value " << v << "of tuple is not a scalar"; - return nullptr; - } - ScalarPtr scalar = v->cast(); - MS_EXCEPTION_IF_NULL(scalar); - if (scalar->isa()) { - tensor = CreateTensorWithValueTuple(value_tuple, kInt32, kType32Len); - } else if (scalar->isa()) { - tensor = CreateTensorWithValueTuple(value_tuple, kFloat32, kType32Len); - } else { - auto type = scalar->type(); - auto type_str = (type == nullptr) ? "nullptr" : type->ToString(); - MS_LOG(ERROR) << "Invalid scalar type: " << type_str; - return nullptr; - } - return tensor; -} - AnfNodePtr CreateTensorInput(const KernelGraphPtr &kernel_graph, const AnfNodePtr &input_node) { MS_EXCEPTION_IF_NULL(input_node); auto value_node = input_node->cast(); diff --git a/mindspore/ccsrc/pynative/pynative_execute.cc b/mindspore/ccsrc/pynative/pynative_execute.cc index e5fb0c694..4144ad2d6 100644 --- a/mindspore/ccsrc/pynative/pynative_execute.cc +++ b/mindspore/ccsrc/pynative/pynative_execute.cc @@ -158,8 +158,9 @@ py::object RunOpInMs(const OpExecInfoPtr& op_exec_info, PynativeStatusCode* stat session->Init(ms_context->device_id()); std::string graph_info = GetSingleOpGraphInfo(op_exec_info); - session->BuildOp(*op_exec_info, graph_info); - py::tuple result = session->RunOp(*op_exec_info, graph_info); + std::vector input_tensors; + session->BuildOp(*op_exec_info, graph_info, &input_tensors); + py::tuple result = session->RunOp(*op_exec_info, graph_info, input_tensors); ms_context->set_enable_pynative_infer(false); *status = PYNATIVE_SUCCESS; return result; diff --git a/mindspore/ccsrc/session/ascend_session.cc b/mindspore/ccsrc/session/ascend_session.cc index ba0ef836e..4455d33ee 100755 --- a/mindspore/ccsrc/session/ascend_session.cc +++ b/mindspore/ccsrc/session/ascend_session.cc @@ -204,10 +204,12 @@ void AscendSession::RunOpExecTask(const std::shared_ptr &kernel_gra MS_LOG(INFO) << "Finish!"; } -void AscendSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) { +void AscendSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + std::vector *input_tensors) { + MS_EXCEPTION_IF_NULL(input_tensors); MS_LOG(INFO) << "Build op " << op_run_info.op_name << " start !"; // construct graph include one op - auto graph = ConstructSingleOpGraph(op_run_info); + auto graph = ConstructSingleOpGraph(op_run_info, input_tensors); MS_EXCEPTION_IF_NULL(graph); opt::RunOpAscendBackendIRFusionOptimization(graph); // kernel select @@ -222,14 +224,12 @@ void AscendSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph run_op_graphs_[graph_info] = graph; } -py::tuple AscendSession::RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) { +py::tuple AscendSession::RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + const std::vector &input_tensors) { auto graph = run_op_graphs_[graph_info]; MS_EXCEPTION_IF_NULL(graph); MS_LOG(INFO) << "Run op " << op_run_info.op_name << " start!"; // malloc mem - std::vector input_tensors = {}; - std::vector tensors_mask = {}; - ToTensorPtr(op_run_info, &input_tensors, &tensors_mask); RunOpMemoryAlloc(input_tensors, graph.get()); // load input data to device LoadInputData(graph, input_tensors); diff --git a/mindspore/ccsrc/session/ascend_session.h b/mindspore/ccsrc/session/ascend_session.h index c45ab6630..2d2469140 100755 --- a/mindspore/ccsrc/session/ascend_session.h +++ b/mindspore/ccsrc/session/ascend_session.h @@ -41,8 +41,10 @@ class AscendSession : public SessionBasic { GraphId CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) override; void RunGraph(const GraphId &graph_id, const std::vector &inputs, VectorRef *outputs) override; void BuildGraph(GraphId) override; - void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) override; - py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) override; + void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + std::vector *input_tensors) override; + py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + const std::vector &input_tensors) override; // set parameters of final graph GraphId SetFinalGraphInput(const std::vector &args) override; diff --git a/mindspore/ccsrc/session/gpu_session.cc b/mindspore/ccsrc/session/gpu_session.cc index c0b2323e0..98a84cd6d 100644 --- a/mindspore/ccsrc/session/gpu_session.cc +++ b/mindspore/ccsrc/session/gpu_session.cc @@ -132,9 +132,11 @@ void GPUSession::RunGraph(const GraphId &graph_id, const std::vector *input_tensors) { // Prepare the graph - auto kernel_graph = ConstructSingleOpGraph(op_run_info); + MS_EXCEPTION_IF_NULL(input_tensors); + auto kernel_graph = ConstructSingleOpGraph(op_run_info, input_tensors); MS_EXCEPTION_IF_NULL(kernel_graph); SelectKernel(kernel_graph); StartKernelRT(); @@ -142,12 +144,10 @@ void GPUSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_in run_op_graphs_[graph_info] = kernel_graph; } -py::tuple GPUSession::RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) { +py::tuple GPUSession::RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + const std::vector &input_tensors) { auto kernel_graph = run_op_graphs_[graph_info]; MS_EXCEPTION_IF_NULL(kernel_graph); - std::vector input_tensors = {}; - std::vector tensors_mask = {}; - ToTensorPtr(op_run_info, &input_tensors, &tensors_mask); RunOpAllocateMemory(input_tensors, kernel_graph.get()); // Execute the computation LoadInputData(kernel_graph, input_tensors); diff --git a/mindspore/ccsrc/session/gpu_session.h b/mindspore/ccsrc/session/gpu_session.h index d81a6c58f..470c9b479 100644 --- a/mindspore/ccsrc/session/gpu_session.h +++ b/mindspore/ccsrc/session/gpu_session.h @@ -39,8 +39,10 @@ class GPUSession : public SessionBasic { GraphId CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) override; void RunGraph(const GraphId &graph_id, const std::vector &inputs, VectorRef *outputs) override; - void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) override; - py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info) override; + void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + std::vector *input_tensors) override; + py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info, + const std::vector &input_tensors) override; private: void SelectKernel(const std::shared_ptr &kernel_graph) const; diff --git a/mindspore/ccsrc/session/session_basic.cc b/mindspore/ccsrc/session/session_basic.cc index 33ef78c13..01a836fad 100755 --- a/mindspore/ccsrc/session/session_basic.cc +++ b/mindspore/ccsrc/session/session_basic.cc @@ -17,6 +17,7 @@ #include #include #include +#include #include "pipeline/parse/data_converter.h" #include "ir/manager.h" #include "operator/ops.h" @@ -26,6 +27,7 @@ #include "session/anf_runtime_algorithm.h" #include "kernel/oplib/oplib.h" #include "pre_activate/common/common_backend_optimization.h" +#include "pre_activate/pass/const_input_to_attr_registry.h" #include "pre_activate/common/helper.h" #include "common/utils.h" #include "ir/dtype.h" @@ -178,56 +180,113 @@ BaseRef CreatTupleForOutput(const AnfNodePtr &anf, const KernelGraph &graph, return ret; } -std::string FindOpInputParameterType(const std::string &op_name, kernel::OpImplyType implyType, size_t index) { - std::string para_type; - auto op_info = kernel::OpLib::FindOp(op_name, implyType); - if (op_info == nullptr) { - return para_type; +bool RunOpConvertConstInputToAttr(const py::object &input_object, size_t input_index, const PrimitivePtr &op_prim, + const std::unordered_set &input_attrs) { + MS_EXCEPTION_IF_NULL(op_prim); + auto input_names_value = op_prim->GetAttr(kAttrInputNames); + if (input_names_value == nullptr) { + return false; + } + auto input_names_vec = GetValue>(input_names_value); + if (input_index >= input_names_vec.size()) { + MS_LOG(EXCEPTION) << "The input index: " << input_index << " is large than the input names vector size!"; } - auto op_inputs_info_vec = op_info->inputs_ptr(); - if (index >= op_inputs_info_vec.size()) { - return para_type; + + if (input_attrs.find(input_index) != input_attrs.end()) { + ValuePtr value = parse::data_converter::PyDataToValue(input_object); + MS_EXCEPTION_IF_NULL(value); + auto input_name = input_names_vec[input_index]; + op_prim->set_attr(input_name, value); + return true; } - auto op_io_info = op_inputs_info_vec[index]; - MS_EXCEPTION_IF_NULL(op_io_info); - para_type = op_io_info->param_type(); - return para_type; + return false; } -void RunOpConvertConstInputToAttr(const OpRunInfo &op_run_info, const std::shared_ptr &cnode) { - MS_EXCEPTION_IF_NULL(cnode); - auto op_inputs = op_run_info.op_inputs; - // get input names vector from attrs - auto primitive = AnfAlgo::GetCNodePrimitive(cnode); - MS_EXCEPTION_IF_NULL(primitive); - auto input_names_value = primitive->GetAttr(kAttrInputNames); - if (input_names_value == nullptr) { +void PlantTensorTupleToVector(const py::tuple &tuple_inputs, const PrimitivePtr &op_prim, + std::vector *input_tensor) { + MS_EXCEPTION_IF_NULL(op_prim); + MS_EXCEPTION_IF_NULL(input_tensor); + for (const auto &input_object : tuple_inputs) { + if (!py::isinstance(input_object)) { + MS_LOG(EXCEPTION) << "The input object is not a tensor!"; + } + auto tensor = py::cast(input_object); + MS_EXCEPTION_IF_NULL(tensor); + input_tensor->push_back(tensor); + } + op_prim->set_attr(kAttrDynInputSizes, MakeValue(std::vector{SizeToInt(tuple_inputs.size())})); +} + +void ConvertValueTupleToTensor(const py::object &input_object, std::vector *input_tensor) { + MS_EXCEPTION_IF_NULL(input_tensor); + ValuePtr input_value = parse::data_converter::PyDataToValue(input_object); + MS_EXCEPTION_IF_NULL(input_value); + if (!input_value->isa()) { + MS_LOG(EXCEPTION) << "The input object is not a value tuple!"; + } + auto value_tuple = input_value->cast(); + MS_EXCEPTION_IF_NULL(value_tuple); + tensor::TensorPtr tensor_ptr = nullptr; + tensor_ptr = opt::CreateTupleTensor(value_tuple); + MS_EXCEPTION_IF_NULL(tensor_ptr); + input_tensor->push_back(tensor_ptr); +} + +void ConvertPyObjectToTensor(const py::object &input_object, const PrimitivePtr &op_prim, + std::vector *input_tensor) { + MS_EXCEPTION_IF_NULL(op_prim); + MS_EXCEPTION_IF_NULL(input_tensor); + tensor::TensorPtr tensor_ptr = nullptr; + if (py::isinstance(input_object)) { + tensor_ptr = py::cast(input_object); + } else if (py::isinstance(input_object)) { + tensor_ptr = std::make_shared(py::cast(input_object), kFloat32); + } else if (py::isinstance(input_object)) { + tensor_ptr = std::make_shared(py::cast(input_object), nullptr); + } else if (py::isinstance(input_object)) { + tensor_ptr = std::make_shared(py::cast(input_object), nullptr); + } else if (py::isinstance(input_object)) { + tensor_ptr = std::make_shared(py::cast(input_object), nullptr); + } else if (py::isinstance(input_object)) { + auto tuple_inputs = py::cast(input_object); + if (py::isinstance(tuple_inputs[0])) { + PlantTensorTupleToVector(tuple_inputs, op_prim, input_tensor); + } else { + ConvertValueTupleToTensor(input_object, input_tensor); + } return; + } else { + MS_LOG(EXCEPTION) << "Run op inputs type is invalid!"; } - auto input_names_vec = GetValue>(input_names_value); - // convert const input to attr - size_t input_num = op_inputs.size(); - if (input_num != input_names_vec.size()) { - MS_LOG(EXCEPTION) << "input name number " << input_names_vec.size() << "is not equal to input value number " - << input_num; + MS_EXCEPTION_IF_NULL(tensor_ptr); + input_tensor->push_back(tensor_ptr); +} + +void ConvertInputPyobject(const OpRunInfo &op_run_info, const PrimitivePtr &op_prim, + std::vector *input_tensors, std::vector *tensors_mask) { + MS_EXCEPTION_IF_NULL(op_prim); + MS_EXCEPTION_IF_NULL(input_tensors); + MS_EXCEPTION_IF_NULL(tensors_mask); + if (op_run_info.op_inputs.size() != op_run_info.inputs_mask.size()) { + MS_LOG(EXCEPTION) << "Op input size " << op_run_info.op_inputs.size() << " should be equal to op input mask size " + << op_run_info.inputs_mask.size(); } + opt::ConstInputToAttrInfoRegister reg; + bool reg_exist = opt::ConstInputToAttrInfoRegistry::Instance().GetRegisterByOpName(op_run_info.op_name, ®); + size_t input_num = op_run_info.op_inputs.size(); + MS_LOG(INFO) << "py input size: " << input_num; for (size_t index = 0; index < input_num; ++index) { - // skip tensor - if (py::isinstance(op_inputs[index])) { - continue; - } - // convert to attr - auto para_type = FindOpInputParameterType(op_run_info.op_name, kernel::OpImplyType::kTBE, index); - if (!para_type.empty() && para_type == kAttrDynInput) { - auto tuple_inputs = py::cast(op_inputs[index]); - primitive->set_attr(kAttrDynInputSizes, MakeValue(std::vector{SizeToInt(tuple_inputs.size())})); + // convert const input to attr + if (reg_exist && + RunOpConvertConstInputToAttr(op_run_info.op_inputs[index], index, op_prim, reg.GetConstInputAttrInfo())) { continue; } - ValuePtr value = parse::data_converter::PyDataToValue(op_inputs[index]); - MS_EXCEPTION_IF_NULL(value); - auto input_name = input_names_vec[index]; - // set the input node as attr of the cnode, key is name of input node,value is input node's value - primitive->set_attr(input_name, value); + // convert const and tuple input to tensor + ConvertPyObjectToTensor(op_run_info.op_inputs[index], op_prim, input_tensors); + // make tensors, weight : 1, data : 0 + std::vector new_mask(input_tensors->size() - tensors_mask->size(), + py::cast(op_run_info.inputs_mask[index])); + tensors_mask->insert(tensors_mask->end(), new_mask.begin(), new_mask.end()); } } @@ -638,40 +697,6 @@ void SessionBasic::Summary(KernelGraph *graph) { summary_callback_(0, params_list); } -void SessionBasic::ToTensorPtr(const OpRunInfo &op_run_info, std::vector *inputs, - std::vector *tensor_mask) { - MS_EXCEPTION_IF_NULL(inputs); - MS_EXCEPTION_IF_NULL(tensor_mask); - if (op_run_info.op_inputs.size() != op_run_info.inputs_mask.size()) { - MS_LOG(EXCEPTION) << "Op input size " << op_run_info.op_inputs.size() << " should be equal to op input mask size " - << op_run_info.inputs_mask.size(); - } - size_t input_num = op_run_info.op_inputs.size(); - // get tensors from op_inputs - for (size_t i = 0; i < input_num; ++i) { - tensor::TensorPtr tensor_ptr = nullptr; - auto param_type = FindOpInputParameterType(op_run_info.op_name, kernel::OpImplyType::kTBE, i); - if (py::isinstance(op_run_info.op_inputs[i])) { - tensor_ptr = py::cast(op_run_info.op_inputs[i]); - } else if (!param_type.empty() && param_type == kAttrDynInput) { - auto tuple_inputs = py::cast(op_run_info.op_inputs[i]); - for (auto &&tuple_input : tuple_inputs) { - tensor_ptr = py::cast(tuple_input); - MS_EXCEPTION_IF_NULL(tensor_ptr); - inputs->push_back(tensor_ptr); - tensor_mask->push_back(py::cast(op_run_info.inputs_mask[i])); - } - continue; - } else if (op_run_info.op_name == kApplyMomentumOpName && py::isinstance(op_run_info.op_inputs[i])) { - tensor_ptr = std::make_shared(py::cast(op_run_info.op_inputs[i]), kFloat32); - } - if (tensor_ptr != nullptr) { - inputs->push_back(tensor_ptr); - tensor_mask->push_back(py::cast(op_run_info.inputs_mask[i])); - } - } -} - CNodePtr SessionBasic::ConstructOutput(const AnfNodePtrList &outputs, const std::shared_ptr &graph) { MS_EXCEPTION_IF_NULL(graph); std::vector output_args; @@ -724,30 +749,27 @@ void SessionBasic::CreateOutputNode(const CNodePtr &cnode, const std::shared_ptr MS_LOG(INFO) << "Finish!"; } -std::shared_ptr SessionBasic::ConstructSingleOpGraph(const OpRunInfo &op_run_info) { +std::shared_ptr SessionBasic::ConstructSingleOpGraph(const OpRunInfo &op_run_info, + std::vector *input_tensors) { + MS_EXCEPTION_IF_NULL(input_tensors); auto graph = std::make_shared(); std::vector inputs; - if (op_run_info.op_inputs.size() != op_run_info.inputs_mask.size()) { - MS_LOG(EXCEPTION) << "op_run_info inputs.size" << op_run_info.op_inputs.size() - << " should be equal to parameter_mask.size " << op_run_info.inputs_mask.size(); - } // set input[0] - if (op_run_info.py_primitive == nullptr) { - inputs.push_back(std::make_shared(std::make_shared(op_run_info.op_name))); - } else { - inputs.push_back(std::make_shared(op_run_info.py_primitive)); + PrimitivePtr op_prim = op_run_info.py_primitive; + if (op_prim == nullptr) { + op_prim = std::make_shared(op_run_info.op_name); } + inputs.push_back(std::make_shared(op_prim)); // set input parameter - std::vector input_tensors; std::vector tensors_mask; - ToTensorPtr(op_run_info, &input_tensors, &tensors_mask); - MS_LOG(INFO) << "Input tensor size" << input_tensors.size(); - if (input_tensors.size() != tensors_mask.size()) { - MS_LOG(EXCEPTION) << "Input tensors size " << input_tensors.size() << " should be equal to tensors mask size " + ConvertInputPyobject(op_run_info, op_prim, input_tensors, &tensors_mask); + MS_LOG(INFO) << "Input tensor size: " << input_tensors->size(); + if (input_tensors->size() != tensors_mask.size()) { + MS_LOG(EXCEPTION) << "Input tensors size " << input_tensors->size() << " should be equal to tensors mask size " << tensors_mask.size(); } - for (size_t i = 0; i < input_tensors.size(); ++i) { - auto parameter = ConstructRunOpParameter(graph, input_tensors[i], tensors_mask[i]); + for (size_t i = 0; i < input_tensors->size(); ++i) { + auto parameter = ConstructRunOpParameter(graph, input_tensors->at(i), tensors_mask[i]); inputs.push_back(parameter); graph->MutableInputs()->push_back(parameter); } @@ -756,8 +778,6 @@ std::shared_ptr SessionBasic::ConstructSingleOpGraph(const OpRunInf MS_EXCEPTION_IF_NULL(cnode); // set abstract,which include inferred shapes and types cnode->set_abstract(op_run_info.abstract); - // set const input to attr if value is not a tensor,such as scalar or tuple - RunOpConvertConstInputToAttr(op_run_info, cnode); // set execution order std::vector exe_order = {cnode}; graph->set_execution_order(exe_order); diff --git a/mindspore/ccsrc/session/session_basic.h b/mindspore/ccsrc/session/session_basic.h index f1872e375..aa359c74d 100755 --- a/mindspore/ccsrc/session/session_basic.h +++ b/mindspore/ccsrc/session/session_basic.h @@ -61,9 +61,11 @@ class SessionBasic { virtual void RunGraph(const GraphId &graph_id, const std::vector &inputs, VectorRef *outputs) = 0; - virtual void BuildOp(const OpRunInfo &, const GraphInfo &) {} + virtual void BuildOp(const OpRunInfo &, const GraphInfo &, std::vector *input_tensors) {} - virtual py::tuple RunOp(const OpRunInfo &, const GraphInfo &) { return py::tuple(); } + virtual py::tuple RunOp(const OpRunInfo &, const GraphInfo &, const std::vector &input_tensors) { + return py::tuple(); + } virtual void RegisterSummaryCallBackFunc(const CallBackFunc &callback); @@ -96,10 +98,8 @@ class SessionBasic { void CreateOutputNode(const CNodePtr &cnode, const std::shared_ptr &graph); CNodePtr ConstructOutput(const AnfNodePtrList &outputs, const std::shared_ptr &graph); // create a single run op graph - std::shared_ptr ConstructSingleOpGraph(const OpRunInfo &op_run_info); - // get tensors from op inputs - void ToTensorPtr(const OpRunInfo &op_run_info, std::vector *inputs, - std::vector *tensor_mask); + std::shared_ptr ConstructSingleOpGraph(const OpRunInfo &op_run_info, + std::vector *input_tensor); // trans BaseRef list to py::tuple BaseRef TransformBaseRefListToTuple(const BaseRef &base_ref); -- GitLab