diff --git a/mindspore/lite/c_ops/power.cc b/mindspore/lite/c_ops/power.cc index 03ea09a4ecfc3f6690cecacdce3edac001db742b..34490936bc38df26616253bb37d2d0dd487b94c0 100644 --- a/mindspore/lite/c_ops/power.cc +++ b/mindspore/lite/c_ops/power.cc @@ -47,7 +47,7 @@ int Power::InferShape(std::vector inputs, std::vector
  • shape() != x_tensor->shape() || exp_tensor->data_type() != x_tensor->data_type()) { MS_LOG(ERROR) << "Power inputs shape or type is not equal!"; return 1; diff --git a/mindspore/lite/src/runtime/kernel/arm/base/matmul_base.cc b/mindspore/lite/src/runtime/kernel/arm/base/matmul_base.cc index ee3ed37599e50719d8895bfd1ce70199618628c7..e7f4b7c0be0715b4b4a28dd724abdbdaa9797e2e 100644 --- a/mindspore/lite/src/runtime/kernel/arm/base/matmul_base.cc +++ b/mindspore/lite/src/runtime/kernel/arm/base/matmul_base.cc @@ -39,7 +39,7 @@ kernel::LiteKernel *CpuMatmulKernelCreator(const std::vectoris_relu6_; // todo int thread_count = conv_param->thread_num_; - int tile_n = 16; + const int tile_n = 16; int output_count = out_h * out_w; int output_tile_count = UP_DIV(output_count, tile_n); @@ -379,7 +379,7 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16 float16_t *tile_buffer, float16_t *block_unit_buffer, float16_t *tmp_dst_buffer, float16_t *tmp_out, int task_id, ConvParameter *conv_param) { int thread_count = conv_param->thread_num_; - int tile_num = 16; + const int tile_num = 16; const int output_unit = 4; const int k_plane = 36; int ic4 = UP_DIV(conv_param->input_channel_, C4NUM); @@ -427,7 +427,7 @@ void UnPack3x3OutputFp16(const float16_t *src, float16_t *dst, int batch, int he float16_t *batch_out = dst + ro_batch_size; for (int h = 0; h < height; h++) { int src_h_offset = h * out_w_block * C4NUM * C8NUM; - int dst_h_offset = h * width * channel; + const int dst_h_offset = h * width * channel; for (int w = 0; w < width; w++) { int src_w_offset = src_h_offset + w * C8NUM; int dst_w_offset = dst_h_offset + w * channel; @@ -462,7 +462,7 @@ void UnPack3x3ReluOutputFp16(const float16_t *src, float16_t *dst, int batch, in float16_t *batch_out = dst + ro_batch_size; for (int h = 0; h < height; h++) { int src_h_offset = h * out_w_block * C4NUM * C8NUM; - int dst_h_offset = h * width * channel; + const int dst_h_offset = h * width * channel; for (int w = 0; w < width; w++) { int src_w_offset = src_h_offset + w * C8NUM; int dst_w_offset = dst_h_offset + w * channel; @@ -502,7 +502,7 @@ void UnPack3x3Relu6OutputFp16(const float16_t *src, float16_t *dst, int batch, i float16_t *batch_out = dst + ro_batch_size; for (int h = 0; h < height; h++) { int src_h_offset = h * out_w_block * C4NUM * C8NUM; - int dst_h_offset = h * width * channel; + const int dst_h_offset = h * width * channel; for (int w = 0; w < width; w++) { int src_w_offset = src_h_offset + w * C8NUM; int dst_w_offset = dst_h_offset + w * channel; @@ -545,7 +545,7 @@ void ConvWinogardFp16(float16_t *input_data, float16_t *trans_weight, const floa int out_unit = conv_param->output_unit_; int out_w_block = UP_DIV(conv_param->output_w_, out_unit); int out_h_block = UP_DIV(conv_param->output_h_, out_unit); - int tile_num = 16; + const int tile_num = 16; int output_count = out_w_block * out_h_block; int output_tile_count = UP_DIV(output_count, tile_num); int out_channel = conv_param->output_channel_; @@ -594,7 +594,7 @@ void UnPackWinogradOutputFp16(const float16_t *src, float16_t *dst, int batch, i int dst_batch_offset = b * height * width * channel; for (int h = 0; h < height; h++) { int src_h_offset = src_batch_offset + C8NUM * (h * out_w_block_num * output_unit); - int dst_h_offset = dst_batch_offset + h * width * channel; + const int dst_h_offset = dst_batch_offset + h * width * channel; for (int w = 0; w < width; w++) { int src_w_offset = src_h_offset + w * C8NUM; int dst_w_offset = dst_h_offset + w * channel; @@ -633,7 +633,7 @@ void UnPackWinogradReluOutputFp16(const float16_t *src, float16_t *dst, int batc int dst_batch_offset = b * height * width * channel; for (int h = 0; h < height; h++) { int src_h_offset = src_batch_offset + C8NUM * (h * out_w_block_num * output_unit); - int dst_h_offset = dst_batch_offset + h * width * channel; + const int dst_h_offset = dst_batch_offset + h * width * channel; for (int w = 0; w < width; w++) { int src_w_offset = src_h_offset + w * C8NUM; int dst_w_offset = dst_h_offset + w * channel; @@ -679,7 +679,7 @@ void UnPackWinogradRelu6OutputFp16(const float16_t *src, float16_t *dst, int bat int dst_batch_offset = b * height * width * channel; for (int h = 0; h < height; h++) { int src_h_offset = src_batch_offset + C8NUM * (h * out_w_block_num * output_unit); - int dst_h_offset = dst_batch_offset + h * width * channel; + const int dst_h_offset = dst_batch_offset + h * width * channel; for (int w = 0; w < width; w++) { int src_w_offset = src_h_offset + w * C8NUM; int dst_w_offset = dst_h_offset + w * channel; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/deconv_fp16.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/deconv_fp16.c index 632621971748c2a49c9e0ba0de22dedc6dc1dbba..2675ecf16ced60c0c62c7f29ddeabd4b5642c0f8 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/deconv_fp16.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/deconv_fp16.c @@ -18,6 +18,9 @@ void PostConvFuncCommFp16(float16_t *out_ptr, const float16_t *src_ptr_, const float16_t *bias_ptr, size_t output_channel, size_t plane_size, size_t stride, bool is_relu, bool is_relu6, int size) { + if (size == 0) { + return; + } for (int oc = 0; oc < output_channel; oc++) { int oc_div = oc / size, oc_mod = oc % size; for (int hw = 0; hw < plane_size; hw++) { diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/pack_fp16.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/pack_fp16.c index af5f9b92d767621d0308eb47c634b847bdf5e105..b4e4ad89eabf5a448e56dba795104bdcb903243a 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/pack_fp16.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/pack_fp16.c @@ -93,8 +93,8 @@ void Im2ColPackUnitFp16(float16_t *input_data, ConvParameter *conv_param, float1 void PackWeightFp16(float16_t *weight_data, ConvParameter *conv_param, float16_t *packed_weight) { // original weight format : ohwi - int tile_num = 8; - int inchannel_block = 4; + const int tile_num = 8; + const int inchannel_block = 4; int kernel_h = conv_param->kernel_h_; int kernel_w = conv_param->kernel_w_; int in_channel = conv_param->input_channel_; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_transform_fp16.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_transform_fp16.c index c7d90a70264caa7eb1dc218f291a04f6cc33df7b..e115b006dd15699de5bd05d1fe12452cfa7ef618 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_transform_fp16.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_transform_fp16.c @@ -539,7 +539,7 @@ void Conv3x3Fp16OutputTransform(const float16_t *gemm_out, float16_t *out_data, void WinogradInputTransformFp16(const float16_t *input_data, float16_t *trans_input, float16_t *tmp_data, int cal_num, int out_tile_index, int out_w_block_num, ConvParameter *conv_param, InputTransformUnitFp16Func input_trans_func) { - int tile_num = 16; + const int tile_num = 16; int input_unit = conv_param->input_unit_; int output_unit = conv_param->output_unit_; int in_channel = conv_param->input_channel_; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_utils_fp16.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_utils_fp16.c index 0ea259fe3c4e0e1059e6cf0e7d1e6391490e27a0..b38cc91f3ef868ce668490739e8792d6d728524c 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_utils_fp16.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp16/winograd_utils_fp16.c @@ -160,7 +160,7 @@ void InputTransform4x4UnitFp16(const float16_t *src_data, float16_t *dst_data, i float16_t m23 = t23 - 0.25f * t21; float16_t m30 = t30 - 4 * t32; - float16_t m31 = t31 + 2 * t32; + const float16_t m31 = t31 + 2 * t32; float16_t m32 = 2 * t32 - t31; float16_t m33 = t33 - 0.25f * t31; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv.c index 91a931702807bb8d85c34b01d840dd17ea3031b1..9d412fd028f74ebacfb8476f040c51fcd0a17646 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv.c @@ -437,7 +437,7 @@ void Conv3x3Fp32(float *input_data, float *transed_weight, const float *bias_dat int out_h_block = UP_DIV(conv_param->output_h_, OUPUT_UNIT); int output_count = out_w_block * out_h_block; int output_tile_count = UP_DIV(output_count, TILE_NUM); - int input_unit_square = 4 * 4; + const int input_unit_square = 4 * 4; float *tile_buffer = buffer_list[0]; float *block_unit_buffer = buffer_list[1]; float *tmp_dst_buffer = buffer_list[2]; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arg_min_max_int8.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arg_min_max_int8.c index 72fdc18597f375f60777692dbc5b5e6070b2d30a..5e18020c2d936574aef7ec426237116f85246e5c 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arg_min_max_int8.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arg_min_max_int8.c @@ -91,7 +91,7 @@ int8_t GetInt8Output(float real_out, float output_inverse_scale, int32_t output_ void Int8ArgMinMaxDim0(const int8_t *input, int8_t *output, const int *in_shape, ArgMinMaxParameter *param, QuantArg *in_quant_arg, QuantArg *out_quant_arg) { bool out_value = param->out_value_; - float output_inverse_scale = 1.f / out_quant_arg->scale_; + const float output_inverse_scale = 1.f / out_quant_arg->scale_; float bias = -in_quant_arg->zp_ * in_quant_arg->scale_; int32_t output_zp = out_quant_arg->zp_; for (int32_t i = 0; i < param->in_strides_[0]; ++i) { @@ -117,7 +117,7 @@ void Int8ArgMinMaxDim0(const int8_t *input, int8_t *output, const int *in_shape, void Int8ArgMinMaxDim1(const int8_t *input, int8_t *output, const int *in_shape, ArgMinMaxParameter *param, QuantArg *in_quant_arg, QuantArg *out_quant_arg) { bool out_value = param->out_value_; - float output_inverse_scale = 1.f / out_quant_arg->scale_; + const float output_inverse_scale = 1.f / out_quant_arg->scale_; float bias = -in_quant_arg->zp_ * in_quant_arg->scale_; int32_t output_zp = out_quant_arg->zp_; int in_shape1 = in_shape[1]; @@ -148,7 +148,7 @@ void Int8ArgMinMaxDim1(const int8_t *input, int8_t *output, const int *in_shape, void Int8ArgMinMaxDim2(const int8_t *input, int8_t *output, const int *in_shape, ArgMinMaxParameter *param, QuantArg *in_quant_arg, QuantArg *out_quant_arg) { bool out_value = param->out_value_; - float output_inverse_scale = 1.f / out_quant_arg->scale_; + const float output_inverse_scale = 1.f / out_quant_arg->scale_; float bias = -in_quant_arg->zp_ * in_quant_arg->scale_; int32_t output_zp = out_quant_arg->zp_; int in_shape1 = in_shape[1]; @@ -183,7 +183,7 @@ void Int8ArgMinMaxDim2(const int8_t *input, int8_t *output, const int *in_shape, void Int8ArgMinMaxDim3(const int8_t *input, int8_t *output, const int *in_shape, ArgMinMaxParameter *param, QuantArg *in_quant_arg, QuantArg *out_quant_arg) { bool out_value = param->out_value_; - float output_inverse_scale = 1.f / out_quant_arg->scale_; + const float output_inverse_scale = 1.f / out_quant_arg->scale_; float bias = -in_quant_arg->zp_ * in_quant_arg->scale_; int32_t output_zp = out_quant_arg->zp_; int in_shape1 = in_shape[1]; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arithmetic_int8.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arithmetic_int8.c index e67e148771cdc37b57e544145aa36c685485dd81..9fddb2adbc5d01b918f5a9d603aadfdb3abc4cf2 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arithmetic_int8.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/arithmetic_int8.c @@ -26,7 +26,7 @@ int ElementNotEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int elem ArithmeticQuantArg *quant_arg) { float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_; float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_; - float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; + const float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; float out_zp = quant_arg->out_args_.zp_; for (int index = 0; index < element_size; ++index) { @@ -45,7 +45,7 @@ int ElementNotEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int elem int ElementEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size, ArithmeticQuantArg *quant_arg) { float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_; float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_; - float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; + const float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; float out_zp = quant_arg->out_args_.zp_; for (int index = 0; index < element_size; ++index) { float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias; @@ -63,7 +63,7 @@ int ElementEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element int ElementLessInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size, ArithmeticQuantArg *quant_arg) { float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_; float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_; - float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; + const float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; float out_zp = quant_arg->out_args_.zp_; for (int index = 0; index < element_size; ++index) { float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias; @@ -78,7 +78,7 @@ int ElementLessEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int ele ArithmeticQuantArg *quant_arg) { float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_; float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_; - float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; + const float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; float out_zp = quant_arg->out_args_.zp_; for (int index = 0; index < element_size; ++index) { @@ -94,7 +94,7 @@ int ElementGreaterInt8(int8_t *input0, int8_t *input1, int8_t *output, int eleme ArithmeticQuantArg *quant_arg) { float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_; float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_; - float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; + const float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; float out_zp = quant_arg->out_args_.zp_; for (int index = 0; index < element_size; ++index) { @@ -110,7 +110,7 @@ int ElementGreaterEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int ArithmeticQuantArg *quant_arg) { float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_; float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_; - float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; + const float output_inverse_scale = 1.f / quant_arg->out_args_.scale_; float out_zp = quant_arg->out_args_.zp_; for (int index = 0; index < element_size; ++index) { float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/conv_int8.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/conv_int8.c index cb115e161c3ec529dd2166ec3f393397d5f123e7..124efb15a7f3a24fb1052c84debcf707e6dbfe7c 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/conv_int8.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/conv_int8.c @@ -365,7 +365,7 @@ void Conv3x3Int8(int16_t *input_data, int16_t *transed_weight, const int32_t *bi int output_tile_count = UP_DIV(output_count, TILE_NUM); int oc4 = UP_DIV(output_channel, C4NUM); int tile_buffer_offset = TILE_NUM * 16 * ic8 * C8NUM; - int block_unit_buffer_offset = 16 * C8NUM; + const int block_unit_buffer_offset = 16 * C8NUM; int tmp_dst_buffer_offset = TILE_NUM * 16 * oc4 * C4NUM; int input_batch = conv_param->input_batch_; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/reduce_int8.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/reduce_int8.c index 61952ae7f6bd8fe533ddb3a72cf2b13850d6f790..272949d3ee2796acabc04f2610ef3c39f75aa07f 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/reduce_int8.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/reduce_int8.c @@ -253,7 +253,7 @@ int ReduceMinLastAxis(const int outer_size, const int inner_size, const int axis return NNACL_NULL_PTR; } int i, j, k; - int base_offset = 20; + const int base_offset = 20; for (j = tid; j < outer_size; j += thread_num) { const int32_t *outer_src = src_data + j * axis_size * inner_size; int8_t *outer_dst = dst_data + j * inner_size; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/resize.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/resize.c index 44b6b87e8666e790ebccd411c78c8cb442c46115..40cd0d4ff1b6bbc744c8b7521b565e2f1b513dd8 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/resize.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/int8/resize.c @@ -41,7 +41,7 @@ int ResizeBilinearInt8(const int8_t *input_data, int8_t *output_data, const int for (n = 0; n < in_n; n++) { for (h = tid; h < new_height; h += thread_num) { // float actual_y = (float)h * height_scale; - int base_offset = 20; + const int base_offset = 20; int scaled_actual_y; int bottom, top; int scaled_bottom_weight, scaled_top_weight; @@ -149,7 +149,7 @@ void ComputeNearestNeighborInt(const int32_t pos, const int in_size, const int32 int ResizeNearestNeighborInt8(const int8_t *input_data, int8_t *output_data, const int *input_shape, const int *output_shape, const bool align_corners, const QuantMulArg *multiplier, QuantArg *quant_in, QuantArg *quant_out, int tid, int thread_num) { - int base_offset = 20; + const int base_offset = 20; int32_t batch, y, x, c; int32_t in_h, in_w, new_height, new_width; in_h = input_shape[1]; diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/quantization/fixed_point.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/quantization/fixed_point.c index 1f0d156156d14fa7254316c0ea5d3a6c77ab7db3..3e2010ab2c21e8c90a19ff300532277e8f6fe297 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/quantization/fixed_point.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/quantization/fixed_point.c @@ -55,7 +55,7 @@ int MultiplyByQuantizedMultiplier(int32_t value, int32_t multiplier, int32_t lef } int FractionsBits(int kIntegerBits) { - int totalBits = 8 * sizeof(int32_t) - 1; + const int totalBits = 8 * sizeof(int32_t) - 1; return totalBits - kIntegerBits; } @@ -82,7 +82,7 @@ int32_t BitNot(int32_t a) { return ~(uint32_t)a; } int SelectUsingMask(int mask, int bound, int val) { return BitXor(BitAnd(mask, bound), BitAnd(BitNot(mask), val)); } int32_t MaskNonZero(int32_t a) { - int32_t zreo = 0; + const int32_t zreo = 0; return a ? BitNot(zreo) : zreo; } diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_transform.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_transform.c index 0f7a28970fded118cd1dbe6c182644daf6fdc5e1..3420c208bc295cd5ed970f91e0267900f2fe94aa 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_transform.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_transform.c @@ -284,7 +284,7 @@ void Conv3x3Fp32InputTransform(const float *input_data, float *trans_input, floa int pad_w = conv_param->pad_w_; int pad_h = conv_param->pad_h_; int ic4 = UP_DIV(input_channel, C4NUM); - int input_unit = 4; + const int input_unit = 4; if (out_w_block == 0) { return; } diff --git a/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_utils.c b/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_utils.c index 33244f29c9f34b2ed96472405edaff7a8b10d81d..36f27ccf18b829baccce35aae359611b5b9bdb83 100644 --- a/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_utils.c +++ b/mindspore/lite/src/runtime/kernel/arm/nnacl/winograd_utils.c @@ -162,7 +162,7 @@ void InputTransform4x4Unit(const float *src_data, float *dst_data, int src_step, float m30 = t30 - 4 * t32; float m31 = t31 + 2 * t32; - float m32 = 2 * t32 - t31; + const float m32 = 2 * t32 - t31; float m33 = t33 - 0.25f * t31; (dst_data + i)[0] = m00; diff --git a/mindspore/lite/src/runtime/kernel/opencl/cl/fp32/arithmetic_image2d.cl b/mindspore/lite/src/runtime/kernel/opencl/cl/fp32/arithmetic_image2d.cl index 33d6143f9d4bf91be493a9685881887870f52a22..6438f24e6bd10f7aafd18905749449d8c641e58a 100644 --- a/mindspore/lite/src/runtime/kernel/opencl/cl/fp32/arithmetic_image2d.cl +++ b/mindspore/lite/src/runtime/kernel/opencl/cl/fp32/arithmetic_image2d.cl @@ -49,6 +49,9 @@ __kernel void ElementDiv(__read_only image2d_t input_a, __read_only image2d_t in float4 a = read_imagef(input_a, smp_none, (int2)(X, Y)); float4 b = read_imagef(input_b, smp_none, (int2)(X, Y)); + if (b == 0) { + return; + } write_imagef(output, (int2)(X, Y), a / b); } diff --git a/mindspore/lite/tools/converter/quantizer/aware_quantizer.cc b/mindspore/lite/tools/converter/quantizer/aware_quantizer.cc index ef67965d35f5a63e0c5e8c1d3d377341542eb998..90c6be2a2822695cdd0e8a81c92bcfbdfe893690 100644 --- a/mindspore/lite/tools/converter/quantizer/aware_quantizer.cc +++ b/mindspore/lite/tools/converter/quantizer/aware_quantizer.cc @@ -510,6 +510,7 @@ STATUS AwareQuantizer::QuantConvBias(const mindspore::schema::MetaGraphT *graph, auto ret = memcpy_s(biasTensor->data.data(), bShapeSize * sizeof(int32_t), qDatas, bShapeSize * sizeof(int32_t)); if (ret != EOK) { // MS_LOGE("memcpy_s failed: %d", ret); + delete[] qDatas; return RET_ERROR; } delete[] qDatas;