diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/CMakeLists.txt b/mindspore/ccsrc/minddata/dataset/kernels/image/CMakeLists.txt index 024e6f1dea5b1ce19c1e2408327edfcda821093d..31027617c9577a34652c4864d551c737f67c321e 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/CMakeLists.txt +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/CMakeLists.txt @@ -4,6 +4,7 @@ add_subdirectory(soft_dvpp) add_library(kernels-image OBJECT affine_op.cc auto_contrast_op.cc + bounding_box.cc center_crop_op.cc crop_op.cc cut_out_op.cc diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box.cc new file mode 100644 index 0000000000000000000000000000000000000000..7a307177792f260a8da4df828dc48c584fa61ba6 --- /dev/null +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box.cc @@ -0,0 +1,195 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "minddata/dataset/kernels/image/bounding_box.h" + +#include +#include + +namespace mindspore { +namespace dataset { + +const uint8_t kNumOfCols = 4; + +BoundingBox::BoundingBox(bbox_float x, bbox_float y, bbox_float width, bbox_float height) + : x_(x), y_(y), width_(width), height_(height) {} + +Status BoundingBox::ReadFromTensor(const TensorPtr &bbox_tensor, dsize_t index_of_bbox, + std::shared_ptr *bbox_out) { + bbox_float x; + bbox_float y; + bbox_float width; + bbox_float height; + RETURN_IF_NOT_OK(bbox_tensor->GetItemAt(&x, {index_of_bbox, 0})); + RETURN_IF_NOT_OK(bbox_tensor->GetItemAt(&y, {index_of_bbox, 1})); + RETURN_IF_NOT_OK(bbox_tensor->GetItemAt(&width, {index_of_bbox, 2})); + RETURN_IF_NOT_OK(bbox_tensor->GetItemAt(&height, {index_of_bbox, 3})); + *bbox_out = std::make_shared(x, y, width, height); + return Status::OK(); +} + +Status BoundingBox::ValidateBoundingBoxes(const TensorRow &image_and_bbox) { + if (image_and_bbox.size() != 2) { + return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, + "Requires Image and Bounding Boxes, likely missed bounding boxes."); + } + if (image_and_bbox[1]->shape().Size() < 2) { + return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, + "Bounding boxes shape should have at least two dimensions."); + } + uint32_t num_of_features = image_and_bbox[1]->shape()[1]; + if (num_of_features < 4) { + return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, + "Bounding boxes should be have at least 4 features."); + } + std::vector> bbox_list; + RETURN_IF_NOT_OK(GetListOfBoundingBoxes(image_and_bbox[1], &bbox_list)); + uint32_t img_h = image_and_bbox[0]->shape()[0]; + uint32_t img_w = image_and_bbox[0]->shape()[1]; + for (auto &bbox : bbox_list) { + if ((bbox->x() + bbox->width() > img_w) || (bbox->y() + bbox->height() > img_h)) { + return Status(StatusCode::kBoundingBoxOutOfBounds, __LINE__, __FILE__, + "At least one of the bounding boxes is out of bounds of the image."); + } + if (static_cast(bbox->x()) < 0 || static_cast(bbox->y()) < 0) { + return Status(StatusCode::kBoundingBoxOutOfBounds, __LINE__, __FILE__, + "At least one of the bounding boxes has negative min_x or min_y."); + } + } + return Status::OK(); +} + +Status BoundingBox::WriteToTensor(const TensorPtr &bbox_tensor, dsize_t index_of_bbox) { + RETURN_IF_NOT_OK(bbox_tensor->SetItemAt({index_of_bbox, 0}, x_)); + RETURN_IF_NOT_OK(bbox_tensor->SetItemAt({index_of_bbox, 1}, y_)); + RETURN_IF_NOT_OK(bbox_tensor->SetItemAt({index_of_bbox, 2}, width_)); + RETURN_IF_NOT_OK(bbox_tensor->SetItemAt({index_of_bbox, 3}, height_)); + return Status::OK(); +} + +Status BoundingBox::GetListOfBoundingBoxes(const TensorPtr &bbox_tensor, + std::vector> *bbox_out) { + dsize_t num_of_boxes = bbox_tensor->shape()[0]; + for (dsize_t i = 0; i < num_of_boxes; i++) { + std::shared_ptr bbox; + RETURN_IF_NOT_OK(ReadFromTensor(bbox_tensor, i, &bbox)); + bbox_out->push_back(bbox); + } + return Status::OK(); +} + +Status BoundingBox::CreateTensorFromBoundingBoxList(const std::vector> &bboxes, + TensorPtr *tensor_out) { + dsize_t num_of_boxes = bboxes.size(); + std::vector bboxes_for_tensor; + for (dsize_t i = 0; i < num_of_boxes; i++) { + bbox_float b_data[kNumOfCols] = {bboxes[i]->x(), bboxes[i]->y(), bboxes[i]->width(), bboxes[i]->height()}; + bboxes_for_tensor.insert(bboxes_for_tensor.end(), b_data, b_data + kNumOfCols); + } + RETURN_IF_NOT_OK(Tensor::CreateFromVector(bboxes_for_tensor, TensorShape{num_of_boxes, kNumOfCols}, tensor_out)); + return Status::OK(); +} + +Status BoundingBox::PadBBoxes(const TensorPtr *bbox_list, size_t bbox_count, int32_t pad_top, int32_t pad_left) { + for (dsize_t i = 0; i < bbox_count; i++) { + std::shared_ptr bbox; + RETURN_IF_NOT_OK(ReadFromTensor(*bbox_list, i, &bbox)); + bbox->SetX(bbox->x() + pad_left); + bbox->SetY(bbox->y() + pad_top); + RETURN_IF_NOT_OK(bbox->WriteToTensor(*bbox_list, i)); + } + return Status::OK(); +} + +Status BoundingBox::UpdateBBoxesForCrop(TensorPtr *bbox_list, size_t *bbox_count, int32_t CB_Xmin, int32_t CB_Ymin, + int32_t CB_Xmax, int32_t CB_Ymax) { + // PASS LIST, COUNT OF BOUNDING BOXES + // Also PAss X/Y Min/Max of image cropped region - normally obtained from 'GetCropBox' functions + std::vector correct_ind; + std::vector copyVals; + bool retFlag = false; // true unless overlap found + dsize_t bboxDim = (*bbox_list)->shape()[1]; + for (dsize_t i = 0; i < *bbox_count; i++) { + std::shared_ptr bbox; + RETURN_IF_NOT_OK(ReadFromTensor(*bbox_list, i, &bbox)); + bbox_float bb_Xmax = bbox->x() + bbox->width(); + bbox_float bb_Ymax = bbox->y() + bbox->height(); + // check for image / BB overlap + if (((bbox->x() > CB_Xmax) || (bbox->y() > CB_Ymax)) || ((bb_Xmax < CB_Xmin) || (bb_Ymax < CB_Ymin))) { + continue; // no overlap found + } + // Update this bbox and select it to move to the final output tensor + correct_ind.push_back(i); + // adjust BBox corners by bringing into new CropBox if beyond + // Also reseting/adjusting for boxes to lie within CropBox instead of Image - subtract CropBox Xmin/YMin + + bbox_float bb_Xmin = bbox->x() - std::min(static_cast(0.0), (bbox->x() - CB_Xmin)) - CB_Xmin; + bbox_float bb_Ymin = bbox->y() - std::min(static_cast(0.0), (bbox->y() - CB_Ymin)) - CB_Ymin; + bb_Xmax = bb_Xmax - std::max(static_cast(0.0), (bb_Xmax - CB_Xmax)) - CB_Xmin; + bb_Ymax = bb_Ymax - std::max(static_cast(0.0), (bb_Ymax - CB_Ymax)) - CB_Ymin; + + // bound check for float values + bb_Xmin = std::max(bb_Xmin, static_cast(0)); + bb_Ymin = std::max(bb_Ymin, static_cast(0)); + bb_Xmax = std::min(bb_Xmax, static_cast(CB_Xmax - CB_Xmin)); // find max value relative to new image + bb_Ymax = std::min(bb_Ymax, static_cast(CB_Ymax - CB_Ymin)); + + // reset min values and calculate width/height from Box corners + bbox->SetX(bb_Xmin); + bbox->SetY(bb_Ymin); + bbox->SetWidth(bb_Xmax - bb_Xmin); + bbox->SetHeight(bb_Ymax - bb_Ymin); + RETURN_IF_NOT_OK(bbox->WriteToTensor(*bbox_list, i)); + } + // create new tensor and copy over bboxes still valid to the image + // bboxes outside of new cropped region are ignored - empty tensor returned in case of none + *bbox_count = correct_ind.size(); + bbox_float temp = 0.0; + for (auto slice : correct_ind) { // for every index in the loop + for (dsize_t ix = 0; ix < bboxDim; ix++) { + RETURN_IF_NOT_OK((*bbox_list)->GetItemAt(&temp, {slice, ix})); + copyVals.push_back(temp); + } + } + std::shared_ptr retV; + RETURN_IF_NOT_OK( + Tensor::CreateFromVector(copyVals, TensorShape({static_cast(*bbox_count), bboxDim}), &retV)); + (*bbox_list) = retV; // reset pointer + return Status::OK(); +} + +Status BoundingBox::UpdateBBoxesForResize(const TensorPtr &bbox_list, size_t bbox_count, int32_t target_width, + int32_t target_height, int32_t orig_width, int32_t orig_height) { + // cast to float to preserve fractional + bbox_float W_aspRatio = (target_width * 1.0) / (orig_width * 1.0); + bbox_float H_aspRatio = (target_height * 1.0) / (orig_height * 1.0); + for (dsize_t i = 0; i < bbox_count; i++) { + // for each bounding box + std::shared_ptr bbox; + RETURN_IF_NOT_OK(ReadFromTensor(bbox_list, i, &bbox)); + // update positions and widths + bbox->SetX(bbox->x() * W_aspRatio); + bbox->SetY(bbox->y() * H_aspRatio); + bbox->SetWidth(bbox->width() * W_aspRatio); + bbox->SetHeight(bbox->height() * H_aspRatio); + // reset bounding box values + bbox->WriteToTensor(bbox_list, i); + } + return Status::OK(); +} + +} // namespace dataset +} // namespace mindspore diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box.h b/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box.h new file mode 100644 index 0000000000000000000000000000000000000000..9525922a03453d6b800d3c7dd66eff1d53df7193 --- /dev/null +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box.h @@ -0,0 +1,137 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_BOUNDING_BOX_H_ +#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_BOUNDING_BOX_H_ + +#include +#include +#include +#include "minddata/dataset/core/tensor.h" +#include "minddata/dataset/core/tensor_row.h" +#include "minddata/dataset/util/status.h" + +namespace mindspore { +namespace dataset { +class BoundingBox { + public: + typedef float_t bbox_float; + + /// \brief Constructor for BoundingBox + /// \param[in] x horizontal axis coordinate of bounding box + /// \param[in] y vertical axis coordinate of bounding box + /// \param[in] width width of bounding box on horizontal axis + /// \param[in] height height of bounding box on vertical axis + BoundingBox(bbox_float x, bbox_float y, bbox_float width, bbox_float height); + + ~BoundingBox() = default; + + /// \brief Provide stream operator for displaying a bounding box. + friend std::ostream &operator<<(std::ostream &out, const BoundingBox &bbox) { + out << "Bounding Box with (X,Y,W,H): (" << bbox.x_ << "," << bbox.y_ << "," << bbox.width_ << "," << bbox.height_ + << ")"; + return out; + } + + /// Getters + bbox_float x() { return x_; } + bbox_float y() { return y_; } + bbox_float width() { return width_; } + bbox_float height() { return height_; } + + /// Setters + void SetX(bbox_float x) { x_ = x; } + void SetY(bbox_float y) { y_ = y; } + void SetWidth(bbox_float w) { width_ = w; } + void SetHeight(bbox_float h) { height_ = h; } + + /// \brief Set the bounding box data to bbox at a certain index in the tensor. + /// \param[in] bbox_tensor tensor containing a list of bounding boxes of shape (m, n) where n >= 4 + /// and first 4 items of each row are x,y,w,h of the bounding box + /// \param[in] index_of_bbox index of bounding box to set to tensor + /// \returns Status status of bounding box set + Status WriteToTensor(const TensorPtr &bbox_tensor, dsize_t index_of_bbox = 0); + + /// \brief Create a bounding box object from an item at a certain index in a tensor. + /// \param[in] bbox_tensor tensor containing a list of bounding boxes of shape (m, n) where n >= 4 + /// and first 4 items of each row are x,y,w,h of the bounding box + /// \param[in] index_of_bbox index of bounding box to fetch from the tensor + /// \param[out] bbox_out output bounding box + /// \returns Status status of bounding box fetch + static Status ReadFromTensor(const TensorPtr &bbox_tensor, dsize_t index_of_bbox, + std::shared_ptr *bbox_out); + + /// \brief Validate a list of bounding boxes with respect to an image. + /// \param[in] image_and_bbox tensor containing a list of bounding boxes of shape (m, n) where n >= 4 + /// and first 4 items of each row are x,y,w,h of the bounding box and an image of shape (H, W, C) or (H, W) + /// \returns Status status of bounding box fetch + static Status ValidateBoundingBoxes(const TensorRow &image_and_bbox); + + /// \brief Get a list of bounding boxes from a tensor. + /// \param[in] bbox_tensor tensor containing a list of bounding boxes of shape (m, n) where n >= 4 + /// and first 4 items of each row are x,y,w,h of the bounding box + /// \param[out] bbox_out output vector of bounding boxes + /// \returns Status status of bounding box list fetch + static Status GetListOfBoundingBoxes(const TensorPtr &bbox_tensor, + std::vector> *bbox_out); + + /// \brief Creates a tensor from a list of bounding boxes. + /// \param[in] bboxes list of bounding boxes + /// \param[out] tensor_out output tensor + /// \returns Status status of tensor creation + static Status CreateTensorFromBoundingBoxList(const std::vector> &bboxes, + TensorPtr *tensor_out); + + /// \brief Updates bounding boxes with required Top and Left padding + /// \note Top and Left padding amounts required to adjust bboxs min X,Y values according to padding 'push' + /// Top/Left since images 0,0 coordinate is taken from top left + /// \param bboxList: A tensor contaning bounding box tensors + /// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop + /// \param pad_top: Total amount of padding applied to image top + /// \param pad_left: Total amount of padding applied to image left side + static Status PadBBoxes(const TensorPtr *bbox_list, size_t bbox_count, int32_t pad_top, int32_t pad_left); + + /// \brief Updates and checks bounding boxes for new cropped region of image + /// \param bbox_list: A tensor contaning bounding box tensors + /// \param bbox_count: total Number of bounding boxes - required within caller function to run update loop + /// \param CB_Xmin: Image's CropBox Xmin coordinate + /// \param CB_Xmin: Image's CropBox Ymin coordinate + /// \param CB_Xmax: Image's CropBox Xmax coordinate - (Xmin + width) + /// \param CB_Xmax: Image's CropBox Ymax coordinate - (Ymin + height) + static Status UpdateBBoxesForCrop(TensorPtr *bbox_list, size_t *bbox_count, int32_t CB_Xmin, int32_t CB_Ymin, + int32_t CB_Xmax, int32_t CB_Ymax); + + /// \brief Updates bounding boxes for an Image Resize Operation - Takes in set of valid BBoxes + /// For e.g those that remain after a crop + /// \param bbox_list: A tensor contaning bounding box tensors + /// \param bbox_count: total Number of bounding boxes - required within caller function to run update loop + /// \param target_width: required width of image post resize + /// \param target_height: required height of image post resize + /// \param orig_width: current width of image pre resize + /// \param orig_height: current height of image pre resize + static Status UpdateBBoxesForResize(const TensorPtr &bbox_list, size_t bbox_count, int32_t target_width, + int32_t target_height, int32_t orig_width, int32_t orig_height); + + private: + bbox_float x_; + bbox_float y_; + bbox_float width_; + bbox_float height_; +}; +} // namespace dataset +} // namespace mindspore + +#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_BOUNDING_BOX_H_ diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box_augment_op.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box_augment_op.cc index 618ed4d3560fcdd167341634188f3735cad3dec3..a92cd38afe607b3ad25ca2cd1a03077704fce6e5 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box_augment_op.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/bounding_box_augment_op.cc @@ -17,6 +17,7 @@ #include #include #include "minddata/dataset/kernels/image/bounding_box_augment_op.h" +#include "minddata/dataset/kernels/image/bounding_box.h" #include "minddata/dataset/kernels/image/resize_op.h" #include "minddata/dataset/kernels/image/image_utils.h" #include "minddata/dataset/core/cv_tensor.h" @@ -32,7 +33,7 @@ BoundingBoxAugmentOp::BoundingBoxAugmentOp(std::shared_ptr transform, Status BoundingBoxAugmentOp::Compute(const TensorRow &input, TensorRow *output) { IO_CHECK_VECTOR(input, output); - BOUNDING_BOX_CHECK(input); // check if bounding boxes are valid + RETURN_IF_NOT_OK(BoundingBox::ValidateBoundingBoxes(input)); uint32_t num_of_boxes = input[1]->shape()[0]; std::shared_ptr crop_out; std::shared_ptr res_out; @@ -40,31 +41,25 @@ Status BoundingBoxAugmentOp::Compute(const TensorRow &input, TensorRow *output) for (uint32_t i = 0; i < num_of_boxes; i++) { // using a uniform distribution to ensure op happens with probability ratio_ if (uniform_(rnd_) < ratio_) { - float min_x = 0; - float min_y = 0; - float b_w = 0; - float b_h = 0; - // get the required items - RETURN_IF_NOT_OK(input[1]->GetItemAt(&min_x, {i, 0})); - RETURN_IF_NOT_OK(input[1]->GetItemAt(&min_y, {i, 1})); - RETURN_IF_NOT_OK(input[1]->GetItemAt(&b_w, {i, 2})); - RETURN_IF_NOT_OK(input[1]->GetItemAt(&b_h, {i, 3})); - RETURN_IF_NOT_OK(Crop(input_restore, &crop_out, static_cast(min_x), static_cast(min_y), - static_cast(b_w), static_cast(b_h))); + std::shared_ptr bbox; + RETURN_IF_NOT_OK(BoundingBox::ReadFromTensor(input[1], i, &bbox)); + RETURN_IF_NOT_OK(Crop(input_restore, &crop_out, static_cast(bbox->x()), static_cast(bbox->y()), + static_cast(bbox->width()), static_cast(bbox->height()))); // transform the cropped bbox region RETURN_IF_NOT_OK(transform_->Compute(crop_out, &res_out)); // place the transformed region back in the restored input std::shared_ptr res_img = CVTensor::AsCVTensor(res_out); // check if transformed crop is out of bounds of the box - if (res_img->mat().cols > b_w || res_img->mat().rows > b_h || res_img->mat().cols < b_w || - res_img->mat().rows < b_h) { + if (res_img->mat().cols > bbox->width() || res_img->mat().rows > bbox->height() || + res_img->mat().cols < bbox->width() || res_img->mat().rows < bbox->height()) { // if so, resize to fit in the box std::shared_ptr resize_op = - std::make_shared(static_cast(b_h), static_cast(b_w)); + std::make_shared(static_cast(bbox->height()), static_cast(bbox->width())); RETURN_IF_NOT_OK(resize_op->Compute(std::static_pointer_cast(res_img), &res_out)); res_img = CVTensor::AsCVTensor(res_out); } - res_img->mat().copyTo(input_restore->mat()(cv::Rect(min_x, min_y, res_img->mat().cols, res_img->mat().rows))); + res_img->mat().copyTo( + input_restore->mat()(cv::Rect(bbox->x(), bbox->y(), res_img->mat().cols, res_img->mat().rows))); } } (*output).push_back(std::move(std::static_pointer_cast(input_restore))); diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.cc index 56bfac2a381ca8d27b452922444bf879982426d7..beb0391901ec48390f348ac97ced4c33633665d5 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.cc @@ -962,103 +962,6 @@ Status RgbaToBgr(const std::shared_ptr &input, std::shared_ptr * RETURN_STATUS_UNEXPECTED("Unexpected error in RgbaToBgr."); } } -// -------- BBOX OPERATIONS -------- // -Status UpdateBBoxesForCrop(std::shared_ptr *bboxList, size_t *bboxCount, int CB_Xmin, int CB_Ymin, int CB_Xmax, - int CB_Ymax) { - // PASS LIST, COUNT OF BOUNDING BOXES - // Also PAss X/Y Min/Max of image cropped region - normally obtained from 'GetCropBox' functions - float bb_Xmin = 0.0, bb_Ymin = 0.0, bb_Xmax = 0.0, bb_Ymax = 0.0; - std::vector correct_ind; - std::vector copyVals; - dsize_t bboxDim = (*bboxList)->shape()[1]; - bool retFlag = false; // true unless overlap found - for (int i = 0; i < *bboxCount; i++) { - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&bb_Xmin, {i, 0})); - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&bb_Ymin, {i, 1})); - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&bb_Xmax, {i, 2})); - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&bb_Ymax, {i, 3})); - bb_Xmax = bb_Xmin + bb_Xmax; - bb_Ymax = bb_Ymin + bb_Ymax; - // check for image / BB overlap - if (((bb_Xmin > CB_Xmax) || (bb_Ymin > CB_Ymax)) || ((bb_Xmax < CB_Xmin) || (bb_Ymax < CB_Ymin))) { - continue; // no overlap found - } - // Update this bbox and select it to move to the final output tensor - correct_ind.push_back(i); - // adjust BBox corners by bringing into new CropBox if beyond - // Also reseting/adjusting for boxes to lie within CropBox instead of Image - subtract CropBox Xmin/YMin - - bb_Xmin = bb_Xmin - std::min(static_cast(0.0), (bb_Xmin - CB_Xmin)) - CB_Xmin; - bb_Xmax = bb_Xmax - std::max(static_cast(0.0), (bb_Xmax - CB_Xmax)) - CB_Xmin; - bb_Ymin = bb_Ymin - std::min(static_cast(0.0), (bb_Ymin - CB_Ymin)) - CB_Ymin; - bb_Ymax = bb_Ymax - std::max(static_cast(0.0), (bb_Ymax - CB_Ymax)) - CB_Ymin; - - // bound check for float values - bb_Xmin = std::max(bb_Xmin, static_cast(0)); - bb_Ymin = std::max(bb_Ymin, static_cast(0)); - bb_Xmax = std::min(bb_Xmax, static_cast(CB_Xmax - CB_Xmin)); // find max value relative to new image - bb_Ymax = std::min(bb_Ymax, static_cast(CB_Ymax - CB_Ymin)); - - // reset min values and calculate width/height from Box corners - RETURN_IF_NOT_OK((*bboxList)->SetItemAt({i, 0}, bb_Xmin)); - RETURN_IF_NOT_OK((*bboxList)->SetItemAt({i, 1}, bb_Ymin)); - RETURN_IF_NOT_OK((*bboxList)->SetItemAt({i, 2}, bb_Xmax - bb_Xmin)); - RETURN_IF_NOT_OK((*bboxList)->SetItemAt({i, 3}, bb_Ymax - bb_Ymin)); - } - // create new tensor and copy over bboxes still valid to the image - // bboxes outside of new cropped region are ignored - empty tensor returned in case of none - *bboxCount = correct_ind.size(); - float temp = 0.0; - for (auto slice : correct_ind) { // for every index in the loop - for (int ix = 0; ix < bboxDim; ix++) { - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&temp, {slice, ix})); - copyVals.push_back(temp); - } - } - std::shared_ptr retV; - RETURN_IF_NOT_OK(Tensor::CreateFromVector(copyVals, TensorShape({static_cast(*bboxCount), bboxDim}), &retV)); - (*bboxList) = retV; // reset pointer - return Status::OK(); -} - -Status PadBBoxes(const std::shared_ptr *bboxList, const size_t &bboxCount, int32_t pad_top, int32_t pad_left) { - for (int i = 0; i < bboxCount; i++) { - float xMin = 0.0, yMin = 0.0; - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&xMin, {i, 0})); - RETURN_IF_NOT_OK((*bboxList)->GetItemAt(&yMin, {i, 1})); - xMin += pad_left; - yMin += pad_top; - RETURN_IF_NOT_OK((*bboxList)->SetItemAt({i, 0}, xMin)); - RETURN_IF_NOT_OK((*bboxList)->SetItemAt({i, 1}, yMin)); - } - return Status::OK(); -} - -Status UpdateBBoxesForResize(const std::shared_ptr &bboxList, const size_t &bboxCount, int32_t target_width_, - int32_t target_height_, int orig_width, int orig_height) { - float bb_Xmin = 0, bb_Ymin = 0, bb_Xwidth = 0, bb_Ywidth = 0; - // cast to float to preserve fractional - float W_aspRatio = (target_width_ * 1.0) / (orig_width * 1.0); - float H_aspRatio = (target_height_ * 1.0) / (orig_height * 1.0); - for (int i = 0; i < bboxCount; i++) { - // for each bounding box - RETURN_IF_NOT_OK(bboxList->GetItemAt(&bb_Xmin, {i, 0})); - RETURN_IF_NOT_OK(bboxList->GetItemAt(&bb_Ymin, {i, 1})); - RETURN_IF_NOT_OK(bboxList->GetItemAt(&bb_Xwidth, {i, 2})); - RETURN_IF_NOT_OK(bboxList->GetItemAt(&bb_Ywidth, {i, 3})); - // update positions and widths - bb_Xmin = bb_Xmin * W_aspRatio; - bb_Ymin = bb_Ymin * H_aspRatio; - bb_Xwidth = bb_Xwidth * W_aspRatio; - bb_Ywidth = bb_Ywidth * H_aspRatio; - // reset bounding box values - RETURN_IF_NOT_OK(bboxList->SetItemAt({i, 0}, bb_Xmin)); - RETURN_IF_NOT_OK(bboxList->SetItemAt({i, 1}, bb_Ymin)); - RETURN_IF_NOT_OK(bboxList->SetItemAt({i, 2}, bb_Xwidth)); - RETURN_IF_NOT_OK(bboxList->SetItemAt({i, 3}, bb_Ywidth)); - } - return Status::OK(); -} Status GetJpegImageInfo(const std::shared_ptr &input, int *img_width, int *img_height) { struct jpeg_decompress_struct cinfo {}; diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.h b/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.h index d0b0277a1a7ec50927b173d8de681b5c4f581991..115bf4bce549dde41303f1c3a9e3680bf28d5ecd 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.h +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/image_utils.h @@ -273,38 +273,6 @@ Status RgbaToRgb(const std::shared_ptr &input, std::shared_ptr * /// \return Status code Status RgbaToBgr(const std::shared_ptr &input, std::shared_ptr *output); -/// -------- BBOX OPERATIONS -------- /// -/// \brief Updates and checks bounding boxes for new cropped region of image -/// \param bboxList: A tensor contaning bounding box tensors -/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop -/// \param CB_Xmin: Image's CropBox Xmin coordinate -/// \param CB_Xmin: Image's CropBox Ymin coordinate -/// \param CB_Xmax: Image's CropBox Xmax coordinate - (Xmin + width) -/// \param CB_Xmax: Image's CropBox Ymax coordinate - (Ymin + height) -Status UpdateBBoxesForCrop(std::shared_ptr *bboxList, size_t *bboxCount, int CB_Xmin, int CB_Ymin, int CB_Xmax, - int CB_Ymax); - -/// \brief Updates bounding boxes with required Top and Left padding -/// \note Top and Left padding amounts required to adjust bboxs min X,Y values according to padding 'push' -/// Top/Left since images 0,0 coordinate is taken from top left -/// \param bboxList: A tensor contaning bounding box tensors -/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop -/// \param pad_top: Total amount of padding applied to image top -/// \param pad_left: Total amount of padding applied to image left side -Status PadBBoxes(const std::shared_ptr *bboxList, const size_t &bboxCount, int32_t pad_top, int32_t pad_left); - -/// \brief Updates bounding boxes for an Image Resize Operation - Takes in set of valid BBoxes -/// For e.g those that remain after a crop -/// \param bboxList: A tensor contaning bounding box tensors -/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop -/// \param bboxList: A tensor contaning bounding box tensors -/// \param target_width_: required width of image post resize -/// \param target_width_: required height of image post resize -/// \param orig_width: current width of image pre resize -/// \param orig_height: current height of image pre resize -Status UpdateBBoxesForResize(const std::shared_ptr &bboxList, const size_t &bboxCount, int32_t target_width_, - int32_t target_height_, int orig_width, int orig_height); - /// \brief Get jpeg image width and height /// \param input: CVTensor containing the not decoded image 1D bytes /// \param img_width: the jpeg image width diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.cc index 98bfe4124105a2cd14b17707d67b74fa96ea906b..a972fe51512c8c459332d3eec552f523b7659263 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.cc @@ -19,6 +19,7 @@ #include "minddata/dataset/util/random.h" #include "minddata/dataset/util/status.h" +#include "minddata/dataset/kernels/image/bounding_box.h" #include "minddata/dataset/kernels/image/image_utils.h" #include "minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.h" @@ -27,8 +28,8 @@ namespace dataset { Status RandomCropAndResizeWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { IO_CHECK_VECTOR(input, output); - BOUNDING_BOX_CHECK(input); - CHECK_FAIL_RETURN_UNEXPECTED(input[0]->shape().Size() >= 2, "The shape of input is abnormal"); + RETURN_IF_NOT_OK(BoundingBox::ValidateBoundingBoxes(input)); + CHECK_FAIL_RETURN_UNEXPECTED(input[0]->shape().Size() >= 2, "The shape of input is not >= 2"); output->resize(2); (*output)[1] = std::move(input[1]); // move boxes over to output @@ -46,12 +47,12 @@ Status RandomCropAndResizeWithBBoxOp::Compute(const TensorRow &input, TensorRow int maxX = x + crop_width; // max dims of selected CropBox on image int maxY = y + crop_height; - RETURN_IF_NOT_OK(UpdateBBoxesForCrop(&(*output)[1], &bboxCount, x, y, maxX, maxY)); // IMAGE_UTIL + RETURN_IF_NOT_OK(BoundingBox::UpdateBBoxesForCrop(&(*output)[1], &bboxCount, x, y, maxX, maxY)); // IMAGE_UTIL RETURN_IF_NOT_OK(CropAndResize(input[0], &(*output)[0], x, y, crop_height, crop_width, target_height_, target_width_, interpolation_)); - RETURN_IF_NOT_OK( - UpdateBBoxesForResize((*output)[1], bboxCount, target_width_, target_height_, crop_width, crop_height)); + RETURN_IF_NOT_OK(BoundingBox::UpdateBBoxesForResize((*output)[1], bboxCount, target_width_, target_height_, + crop_width, crop_height)); return Status::OK(); } } // namespace dataset diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_with_bbox_op.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_with_bbox_op.cc index 08b12b8b706e9e4a9e9f5f85c3c91a7d8a9e299a..a5972ffd71bf3a54a89f8e01607949328bc961ff 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_with_bbox_op.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/random_crop_with_bbox_op.cc @@ -19,6 +19,7 @@ #include #include "minddata/dataset/kernels/image/random_crop_with_bbox_op.h" +#include "minddata/dataset/kernels/image/bounding_box.h" #include "minddata/dataset/kernels/image/image_utils.h" #include "minddata/dataset/util/random.h" #include "minddata/dataset/util/status.h" @@ -27,7 +28,7 @@ namespace mindspore { namespace dataset { Status RandomCropWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { IO_CHECK_VECTOR(input, output); - BOUNDING_BOX_CHECK(input); + RETURN_IF_NOT_OK(BoundingBox::ValidateBoundingBoxes(input)); std::shared_ptr pad_image; int32_t t_pad_top, t_pad_bottom, t_pad_left, t_pad_right; @@ -46,7 +47,7 @@ Status RandomCropWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) // update bounding boxes with new values based on relevant image padding if (t_pad_left || t_pad_bottom) { - RETURN_IF_NOT_OK(PadBBoxes(&(*output)[1], boxCount, t_pad_left, t_pad_top)); + RETURN_IF_NOT_OK(BoundingBox::PadBBoxes(&(*output)[1], boxCount, t_pad_left, t_pad_top)); } if (!crop_further) { // no further cropping required @@ -59,7 +60,7 @@ Status RandomCropWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) RandomCropOp::GenRandomXY(&x, &y, padded_image_w, padded_image_h); int maxX = x + RandomCropOp::crop_width_; // max dims of selected CropBox on image int maxY = y + RandomCropOp::crop_height_; - RETURN_IF_NOT_OK(UpdateBBoxesForCrop(&(*output)[1], &boxCount, x, y, maxX, maxY)); + RETURN_IF_NOT_OK(BoundingBox::UpdateBBoxesForCrop(&(*output)[1], &boxCount, x, y, maxX, maxY)); return Crop(pad_image, &(*output)[0], x, y, RandomCropOp::crop_width_, RandomCropOp::crop_height_); } } // namespace dataset diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/random_horizontal_flip_with_bbox_op.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/random_horizontal_flip_with_bbox_op.cc index 809f564b1886c78e0d29a967169afcdee854fca6..8dcf1ce75a8f2c725508186a228feda27f666d51 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/random_horizontal_flip_with_bbox_op.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/random_horizontal_flip_with_bbox_op.cc @@ -15,6 +15,7 @@ */ #include #include "minddata/dataset/kernels/image/random_horizontal_flip_with_bbox_op.h" +#include "minddata/dataset/kernels/image/bounding_box.h" #include "minddata/dataset/kernels/image/image_utils.h" #include "minddata/dataset/util/status.h" #include "minddata/dataset/core/cv_tensor.h" @@ -25,22 +26,21 @@ const float RandomHorizontalFlipWithBBoxOp::kDefProbability = 0.5; Status RandomHorizontalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { IO_CHECK_VECTOR(input, output); - BOUNDING_BOX_CHECK(input); + RETURN_IF_NOT_OK(BoundingBox::ValidateBoundingBoxes(input)); if (distribution_(rnd_)) { // To test bounding boxes algorithm, create random bboxes from image dims size_t num_of_boxes = input[1]->shape()[0]; // set to give number of bboxes float img_center = (input[0]->shape()[1] / 2.); // get the center of the image for (int i = 0; i < num_of_boxes; i++) { - float b_w = 0; // bounding box width - float min_x = 0; - // get the required items - RETURN_IF_NOT_OK(input[1]->GetItemAt(&min_x, {i, 0})); - RETURN_IF_NOT_OK(input[1]->GetItemAt(&b_w, {i, 2})); + std::shared_ptr bbox; + RETURN_IF_NOT_OK(BoundingBox::ReadFromTensor(input[1], i, &bbox)); // do the flip - float diff = img_center - min_x; // get distance from min_x to center - float refl_min_x = diff + img_center; // get reflection of min_x - float new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one - RETURN_IF_NOT_OK(input[1]->SetItemAt({i, 0}, new_min_x)); + BoundingBox::bbox_float diff = img_center - bbox->x(); // get distance from min_x to center + BoundingBox::bbox_float refl_min_x = diff + img_center; // get reflection of min_x + BoundingBox::bbox_float new_min_x = + refl_min_x - bbox->width(); // subtract from the reflected min_x to get the new one + bbox->SetX(new_min_x); + RETURN_IF_NOT_OK(bbox->WriteToTensor(input[1], i)); } (*output).resize(2); // move input to output pointer of bounding boxes diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.cc index 7d2fa7bab50b9448fdd9e78541937cfed3b23630..2faf2ac84055c7a490a0c2dee8e5bffac77c9610 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.cc @@ -17,6 +17,7 @@ #include #include "minddata/dataset/util/status.h" +#include "minddata/dataset/kernels/image/bounding_box.h" #include "minddata/dataset/kernels/image/image_utils.h" #include "minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.h" @@ -25,7 +26,7 @@ namespace dataset { const float RandomVerticalFlipWithBBoxOp::kDefProbability = 0.5; Status RandomVerticalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { IO_CHECK_VECTOR(input, output); - BOUNDING_BOX_CHECK(input); + RETURN_IF_NOT_OK(BoundingBox::ValidateBoundingBoxes(input)); if (distribution_(rnd_)) { dsize_t imHeight = input[0]->shape()[0]; @@ -34,14 +35,13 @@ Status RandomVerticalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow * // one time allocation -> updated in the loop // type defined based on VOC test dataset for (int i = 0; i < boxCount; i++) { - float boxCorner_y = 0.0, boxHeight = 0.0; - float newBoxCorner_y = 0.0; - RETURN_IF_NOT_OK(input[1]->GetItemAt(&boxCorner_y, {i, 1})); // get min y of bbox - RETURN_IF_NOT_OK(input[1]->GetItemAt(&boxHeight, {i, 3})); // get height of bbox + std::shared_ptr bbox; + RETURN_IF_NOT_OK(BoundingBox::ReadFromTensor(input[1], i, &bbox)); // subtract (curCorner + height) from (max) for new Corner position - newBoxCorner_y = (imHeight - 1.0) - ((boxCorner_y + boxHeight) - 1.0); - RETURN_IF_NOT_OK(input[1]->SetItemAt({i, 1}, newBoxCorner_y)); + BoundingBox::bbox_float newBoxCorner_y = (imHeight - 1.0) - ((bbox->y() + bbox->height()) - 1.0); + bbox->SetY(newBoxCorner_y); + RETURN_IF_NOT_OK(bbox->WriteToTensor(input[1], i)); } output->resize(2); diff --git a/mindspore/ccsrc/minddata/dataset/kernels/image/resize_with_bbox_op.cc b/mindspore/ccsrc/minddata/dataset/kernels/image/resize_with_bbox_op.cc index 8d40514f1bd2483611f5670fe6dddae5e07f543d..52ff1da7e959ef93f5a04666024794180bab7d96 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/image/resize_with_bbox_op.cc +++ b/mindspore/ccsrc/minddata/dataset/kernels/image/resize_with_bbox_op.cc @@ -18,6 +18,7 @@ #include #include #include "minddata/dataset/kernels/image/resize_op.h" +#include "minddata/dataset/kernels/image/bounding_box.h" #include "minddata/dataset/kernels/image/image_utils.h" #include "minddata/dataset/core/cv_tensor.h" #include "minddata/dataset/core/tensor.h" @@ -29,7 +30,7 @@ namespace dataset { Status ResizeWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { IO_CHECK_VECTOR(input, output); - BOUNDING_BOX_CHECK(input); + RETURN_IF_NOT_OK(BoundingBox::ValidateBoundingBoxes(input)); int32_t input_h = input[0]->shape()[0]; int32_t input_w = input[0]->shape()[1]; @@ -45,7 +46,7 @@ Status ResizeWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { int32_t output_w = (*output)[0]->shape()[1]; // output width if ResizeWithBBox size_t bboxCount = input[1]->shape()[0]; // number of rows in bbox tensor - RETURN_IF_NOT_OK(UpdateBBoxesForResize((*output)[1], bboxCount, output_w, output_h, input_w, input_h)); + RETURN_IF_NOT_OK(BoundingBox::UpdateBBoxesForResize((*output)[1], bboxCount, output_w, output_h, input_w, input_h)); return Status::OK(); } } // namespace dataset diff --git a/mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h b/mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h index a365c7aba46f45a5490bbd7fddec06ea05524f19..771d1af150ed0e9d91ce3c4e206d7ad1ff4cdc22 100644 --- a/mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h +++ b/mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h @@ -43,46 +43,6 @@ } \ } while (false) -#define BOUNDING_BOX_CHECK(input) \ - do { \ - if (input.size() != 2) { \ - return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \ - "Requires Image and Bounding Boxes, likely missed bounding boxes."); \ - } \ - if (input[1]->shape().Size() < 2) { \ - return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \ - "Bounding boxes shape should have at least two dimensions."); \ - } \ - uint32_t num_of_features = input[1]->shape()[1]; \ - if (num_of_features < 4) { \ - return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \ - "Bounding boxes should be have at least 4 features."); \ - } \ - uint32_t num_of_boxes = input[1]->shape()[0]; \ - uint32_t img_h = input[0]->shape()[0]; \ - uint32_t img_w = input[0]->shape()[1]; \ - for (uint32_t i = 0; i < num_of_boxes; i++) { \ - float min_x = 0.0, min_y = 0.0, b_w = 0.0, b_h = 0.0; \ - bool passing_data_fetch = true; \ - passing_data_fetch &= input[1]->GetItemAt(&min_x, {i, 0}).IsOk(); \ - passing_data_fetch &= input[1]->GetItemAt(&min_y, {i, 1}).IsOk(); \ - passing_data_fetch &= input[1]->GetItemAt(&b_w, {i, 2}).IsOk(); \ - passing_data_fetch &= input[1]->GetItemAt(&b_h, {i, 3}).IsOk(); \ - if (!passing_data_fetch) { \ - return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, \ - "Fetching BBox values failed in BOUNDING_BOX_CHECK."); \ - } \ - if ((min_x + b_w > img_w) || (min_y + b_h > img_h)) { \ - return Status(StatusCode::kBoundingBoxOutOfBounds, __LINE__, __FILE__, \ - "At least one of the bounding boxes is out of bounds of the image."); \ - } \ - if (static_cast(min_x) < 0 || static_cast(min_y) < 0) { \ - return Status(StatusCode::kBoundingBoxOutOfBounds, __LINE__, __FILE__, \ - "At least one of the bounding boxes has negative min_x or min_y."); \ - } \ - } \ - } while (false) - namespace mindspore { namespace dataset { diff --git a/tests/ut/python/dataset/test_random_posterize.py b/tests/ut/python/dataset/test_random_posterize.py index 5748a49e736524a847e98665d51c171abe17d8f3..837ed9294feee2b89a582748d68a53309684cc50 100644 --- a/tests/ut/python/dataset/test_random_posterize.py +++ b/tests/ut/python/dataset/test_random_posterize.py @@ -15,11 +15,12 @@ """ Testing RandomPosterize op in DE """ +import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as c_vision from mindspore import log as logger from util import visualize_list, save_and_check_md5, \ - config_get_set_seed, config_get_set_num_parallel_workers + config_get_set_seed, config_get_set_num_parallel_workers, diff_mse GENERATE_GOLDEN = False @@ -27,9 +28,10 @@ DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" -def skip_test_random_posterize_op_c(plot=False, run_golden=True): +def test_random_posterize_op_c(plot=False, run_golden=False): """ - Test RandomPosterize in C transformations + Test RandomPosterize in C transformations (uses assertion on mse as using md5 could have jpeg decoding + inconsistencies) """ logger.info("test_random_posterize_op_c") @@ -57,6 +59,12 @@ def skip_test_random_posterize_op_c(plot=False, run_golden=True): image_posterize.append(image1) image_original.append(image2) + # check mse as md5 can be inconsistent. + # mse = 2.9668956 is calculated from + # a thousand runs of diff_mse(np.array(image_original), np.array(image_posterize)) that all produced the same mse. + # allow for an error of 0.0000005 + assert abs(2.9668956 - diff_mse(np.array(image_original), np.array(image_posterize))) <= 0.0000005 + if run_golden: # check results with md5 comparison filename = "random_posterize_01_result_c.npz" @@ -70,7 +78,7 @@ def skip_test_random_posterize_op_c(plot=False, run_golden=True): ds.config.set_num_parallel_workers(original_num_parallel_workers) -def skip_test_random_posterize_op_fixed_point_c(plot=False, run_golden=True): +def test_random_posterize_op_fixed_point_c(plot=False, run_golden=True): """ Test RandomPosterize in C transformations with fixed point """ @@ -164,7 +172,7 @@ def test_rescale_with_random_posterize(): assert "Input image data type can not be float" in str(e) if __name__ == "__main__": - skip_test_random_posterize_op_c(plot=True) - skip_test_random_posterize_op_fixed_point_c(plot=True) + test_random_posterize_op_c(plot=False, run_golden=False) + test_random_posterize_op_fixed_point_c(plot=False) test_random_posterize_exception_bit() test_rescale_with_random_posterize()