提交 dfc3409f 编写于 作者: I islam_amin

Update RandomHorizontalFlipWithBBox and BoundingBouxAugment C++ Ops to use floats

上级 7f37bfbb
......@@ -60,7 +60,7 @@
#include "dataset/kernels/image/random_crop_decode_resize_op.h"
#include "dataset/kernels/image/random_crop_op.h"
#include "dataset/kernels/image/random_crop_with_bbox_op.h"
#include "dataset/kernels/image/random_horizontal_flip_bbox_op.h"
#include "dataset/kernels/image/random_horizontal_flip_with_bbox_op.h"
#include "dataset/kernels/image/random_horizontal_flip_op.h"
#include "dataset/kernels/image/random_resize_op.h"
#include "dataset/kernels/image/random_resize_with_bbox_op.h"
......
......@@ -15,7 +15,7 @@ add_library(kernels-image OBJECT
random_crop_op.cc
random_crop_with_bbox_op.cc
random_horizontal_flip_op.cc
random_horizontal_flip_bbox_op.cc
random_horizontal_flip_with_bbox_op.cc
bounding_box_augment_op.cc
random_resize_op.cc
random_rotation_op.cc
......
......@@ -43,28 +43,29 @@ Status BoundingBoxAugmentOp::Compute(const TensorRow &input, TensorRow *output)
std::shared_ptr<Tensor> crop_out;
std::shared_ptr<Tensor> res_out;
std::shared_ptr<CVTensor> input_restore = CVTensor::AsCVTensor(input[0]);
for (uint32_t i = 0; i < num_to_aug; i++) {
uint32_t min_x = 0;
uint32_t min_y = 0;
uint32_t b_w = 0;
uint32_t b_h = 0;
float min_x = 0;
float min_y = 0;
float b_w = 0;
float b_h = 0;
// get the required items
input[1]->GetItemAt<uint32_t>(&min_x, {selected_boxes[i], 0});
input[1]->GetItemAt<uint32_t>(&min_y, {selected_boxes[i], 1});
input[1]->GetItemAt<uint32_t>(&b_w, {selected_boxes[i], 2});
input[1]->GetItemAt<uint32_t>(&b_h, {selected_boxes[i], 3});
Crop(input_restore, &crop_out, min_x, min_y, b_w, b_h);
RETURN_IF_NOT_OK(input[1]->GetItemAt<float>(&min_x, {selected_boxes[i], 0}));
RETURN_IF_NOT_OK(input[1]->GetItemAt<float>(&min_y, {selected_boxes[i], 1}));
RETURN_IF_NOT_OK(input[1]->GetItemAt<float>(&b_w, {selected_boxes[i], 2}));
RETURN_IF_NOT_OK(input[1]->GetItemAt<float>(&b_h, {selected_boxes[i], 3}));
RETURN_IF_NOT_OK(Crop(input_restore, &crop_out, static_cast<int>(min_x), static_cast<int>(min_y),
static_cast<int>(b_w), static_cast<int>(b_h)));
// transform the cropped bbox region
transform_->Compute(crop_out, &res_out);
RETURN_IF_NOT_OK(transform_->Compute(crop_out, &res_out));
// place the transformed region back in the restored input
std::shared_ptr<CVTensor> res_img = CVTensor::AsCVTensor(res_out);
// check if transformed crop is out of bounds of the box
if (res_img->mat().cols > b_w || res_img->mat().rows > b_h || res_img->mat().cols < b_w ||
res_img->mat().rows < b_h) {
// if so, resize to fit in the box
std::shared_ptr<TensorOp> resize_op = std::make_shared<ResizeOp>(b_h, b_w);
resize_op->Compute(std::static_pointer_cast<Tensor>(res_img), &res_out);
std::shared_ptr<TensorOp> resize_op =
std::make_shared<ResizeOp>(static_cast<int32_t>(b_h), static_cast<int32_t>(b_w));
RETURN_IF_NOT_OK(resize_op->Compute(std::static_pointer_cast<Tensor>(res_img), &res_out));
res_img = CVTensor::AsCVTensor(res_out);
}
res_img->mat().copyTo(input_restore->mat()(cv::Rect(min_x, min_y, res_img->mat().cols, res_img->mat().rows)));
......
......@@ -14,7 +14,7 @@
* limitations under the License.
*/
#include <utility>
#include "dataset/kernels/image/random_horizontal_flip_bbox_op.h"
#include "dataset/kernels/image/random_horizontal_flip_with_bbox_op.h"
#include "dataset/kernels/image/image_utils.h"
#include "dataset/util/status.h"
#include "dataset/core/cv_tensor.h"
......@@ -31,21 +31,19 @@ Status RandomHorizontalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow
// To test bounding boxes algorithm, create random bboxes from image dims
size_t num_of_boxes = input[1]->shape()[0]; // set to give number of bboxes
float img_center = (input[0]->shape()[1] / 2.); // get the center of the image
for (int i = 0; i < num_of_boxes; i++) {
uint32_t b_w = 0; // bounding box width
uint32_t min_x = 0;
float b_w = 0; // bounding box width
float min_x = 0;
// get the required items
input[1]->GetItemAt<uint32_t>(&min_x, {i, 0});
input[1]->GetItemAt<uint32_t>(&b_w, {i, 2});
RETURN_IF_NOT_OK(input[1]->GetItemAt<float>(&min_x, {i, 0}));
RETURN_IF_NOT_OK(input[1]->GetItemAt<float>(&b_w, {i, 2}));
// do the flip
float diff = img_center - min_x; // get distance from min_x to center
uint32_t refl_min_x = diff + img_center; // get reflection of min_x
uint32_t new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one
input[1]->SetItemAt<uint32_t>({i, 0}, new_min_x);
float refl_min_x = diff + img_center; // get reflection of min_x
float new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one
RETURN_IF_NOT_OK(input[1]->SetItemAt<float>({i, 0}, new_min_x));
}
(*output).push_back(nullptr);
(*output).push_back(nullptr);
(*output).resize(2);
// move input to output pointer of bounding boxes
(*output)[1] = std::move(input[1]);
// perform HorizontalFlip on the image
......@@ -55,6 +53,5 @@ Status RandomHorizontalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow
*output = input;
return Status::OK();
}
} // namespace dataset
} // namespace mindspore
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the bounding box augment op in DE
"""
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
GENERATE_GOLDEN = False
# updated VOC dataset with correct annotations
DATA_DIR = "../data/dataset/testVOC2012_2"
DATA_DIR_2 = ["../data/dataset/testCOCO/train/",
"../data/dataset/testCOCO/annotations/train.json"] # DATA_DIR, ANNOTATION_DIR
def test_bounding_box_augment_with_rotation_op(plot_vis=False):
"""
Test BoundingBoxAugment op (passing rotation op as transform)
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_rotation_op")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# Ratio is set to 1 to apply rotation on all bounding boxes.
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "bounding_box_augment_rotation_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_with_crop_op(plot_vis=False):
"""
Test BoundingBoxAugment op (passing crop op as transform)
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_crop_op")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# Ratio is set to 1 to apply rotation on all bounding boxes.
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(50), 0.5)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "bounding_box_augment_crop_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_valid_ratio_c(plot_vis=False):
"""
Test BoundingBoxAugment op (testing with valid ratio, less than 1.
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_ratio_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
filename = "bounding_box_augment_valid_ratio_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_op_coco_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without BoundingBoxAugment Op applied,
Testing with COCO dataset
"""
logger.info("test_bounding_box_augment_op_coco_c")
dataCoco1 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection",
decode=True, shuffle=False)
dataCoco2 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection",
decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1)
dataCoco2 = dataCoco2.map(input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
columns_order=["image", "bbox"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataCoco1.create_dict_iterator(), dataCoco2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp, "bbox")
def test_bounding_box_augment_valid_edge_c(plot_vis=False):
"""
Test BoundingBoxAugment op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_edge_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1)
# map to apply ops
# Add column for "annotation"
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "bounding_box_augment_valid_edge_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_invalid_ratio_c():
"""
Test BoundingBoxAugment op with invalid input ratio
"""
logger.info("test_bounding_box_augment_invalid_ratio_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# ratio range is from 0 - 1
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_bounding_box_augment_invalid_bounds_c():
"""
Test BoundingBoxAugment op with invalid bboxes.
"""
logger.info("test_bounding_box_augment_invalid_bounds_c")
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_bounding_box_augment_with_rotation_op(plot_vis=False)
test_bounding_box_augment_with_crop_op(plot_vis=False)
test_bounding_box_augment_op_coco_c(plot_vis=False)
test_bounding_box_augment_valid_ratio_c(plot_vis=False)
test_bounding_box_augment_valid_edge_c(plot_vis=False)
test_bounding_box_augment_invalid_ratio_c()
test_bounding_box_augment_invalid_bounds_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random horizontal flip with bounding boxes op in DE
"""
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
# updated VOC dataset with correct annotations
DATA_DIR = "../data/dataset/testVOC2012_2"
DATA_DIR_2 = ["../data/dataset/testCOCO/train/",
"../data/dataset/testCOCO/annotations/train.json"] # DATA_DIR, ANNOTATION_DIR
def test_random_horizontal_flip_with_bbox_op_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomHorizontalFlipWithBBox Op applied
"""
logger.info("test_random_horizontal_flip_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_flip_with_bbox_op_coco_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomHorizontalFlipWithBBox Op applied,
Testing with COCO dataset
"""
logger.info("test_random_horizontal_flip_with_bbox_op_coco_c")
dataCoco1 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection",
decode=True, shuffle=False)
dataCoco2 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
dataCoco2 = dataCoco2.map(input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
columns_order=["image", "bbox"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataCoco1.create_dict_iterator(), dataCoco2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp, "bbox")
def test_random_horizontal_flip_with_bbox_valid_rand_c(plot_vis=False):
"""
Uses a valid non-default input, expect to pass
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_bbox_valid_rand_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(0.6)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "random_horizontal_flip_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False):
"""
Test RandomHorizontalFlipWithBBox op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_horizontal_flip_with_bbox_valid_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# map to apply ops
# Add column for "annotation"
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_flip_with_bbox_invalid_prob_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid input probability
"""
logger.info("test_random_horizontal_bbox_invalid_prob_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# Note: Valid range of prob should be [0.0, 1.0]
test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_random_horizontal_flip_with_bbox_invalid_bounds_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
"""
logger.info("test_random_horizontal_bbox_invalid_bounds_c")
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_random_horizontal_flip_with_bbox_op_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_op_coco_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_valid_rand_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_invalid_prob_c()
test_random_horizontal_flip_with_bbox_invalid_bounds_c()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册