From dcf40c262b9fb6781c9d0cc82aef734b0d8e0dca Mon Sep 17 00:00:00 2001 From: duxiutao Date: Wed, 24 Jun 2020 16:16:35 +0800 Subject: [PATCH] add case to guard precision and modify get const tensor value in composite kernel --- .../ccsrc/kernel/akg/akg_kernel_build.cc | 4 +- .../bert/test_bert_tdt_nockpt_lossscale.py | 194 ++++++++++++++++++ 2 files changed, 196 insertions(+), 2 deletions(-) create mode 100644 tests/st/networks/models/bert/test_bert_tdt_nockpt_lossscale.py diff --git a/mindspore/ccsrc/kernel/akg/akg_kernel_build.cc b/mindspore/ccsrc/kernel/akg/akg_kernel_build.cc index 1f88bbb89..7608f7550 100644 --- a/mindspore/ccsrc/kernel/akg/akg_kernel_build.cc +++ b/mindspore/ccsrc/kernel/akg/akg_kernel_build.cc @@ -276,11 +276,11 @@ bool AkgKernelBuild::CreateInputDescJson(const AnfNodePtr &anf_node, nlohmann::j input_desc_json[kName] = op_input_name; input_desc_json[kTensorName] = "input_" + std::to_string(GetInputTensorIdxInc(anf_node, real_input_index)); auto input_shape = AnfAlgo::GetInputDeviceShape(anf_node, real_input_index); - if (GetInputTensorValue(anf_node, real_input_index, &input_desc_json)) { + if (anf_node->func_graph() != nullptr && anf_node->func_graph()->has_attr(FUNC_GRAPH_ATTR_GRAPH_KERNEL) && + GetInputTensorValue(anf_node, real_input_index, &input_desc_json)) { MS_LOG(WARNING) << "we take input[" << real_input_index << "] of [" << anf_node->DebugString(2) << "] as const tensor, shape: [" << Vector2Str(input_shape) << "], value: " << input_desc_json[kValue]; - input_shape.clear(); } if (input_shape.empty()) { diff --git a/tests/st/networks/models/bert/test_bert_tdt_nockpt_lossscale.py b/tests/st/networks/models/bert/test_bert_tdt_nockpt_lossscale.py new file mode 100644 index 000000000..4c21eea10 --- /dev/null +++ b/tests/st/networks/models/bert/test_bert_tdt_nockpt_lossscale.py @@ -0,0 +1,194 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""train bert network without lossscale""" + +import os +import pytest +import numpy as np + +import mindspore.common.dtype as mstype +import mindspore.dataset.engine.datasets as de +import mindspore.dataset.transforms.c_transforms as C +from mindspore import context +from mindspore import log as logger +from mindspore.common.tensor import Tensor +from mindspore.nn.optim import Lamb +from mindspore.train.callback import Callback +from mindspore.train.loss_scale_manager import DynamicLossScaleManager +from mindspore.train.model import Model +from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell +from src.bert_model import BertConfig + +DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] +SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json" + +def get_config(version='base', batch_size=1): + """get config""" + if version == 'base': + bert_config = BertConfig( + batch_size=batch_size, + seq_length=128, + vocab_size=21136, + hidden_size=768, + num_hidden_layers=2, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + use_relative_positions=True, + input_mask_from_dataset=True, + token_type_ids_from_dataset=True, + dtype=mstype.float32, + compute_type=mstype.float32) + elif version == 'large': + bert_config = BertConfig( + batch_size=batch_size, + seq_length=128, + vocab_size=30522, + hidden_size=1024, + num_hidden_layers=2, + num_attention_heads=16, + intermediate_size=4096, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + use_relative_positions=True, + input_mask_from_dataset=True, + token_type_ids_from_dataset=True, + dtype=mstype.float32, + compute_type=mstype.float16, + enable_fused_layernorm=True) + else: + bert_config = BertConfig(batch_size=batch_size) + return bert_config + + +def me_de_train_dataset(): + """test me de train dataset""" + # apply repeat operations + repeat_count = 1 + ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", + "next_sentence_labels", "masked_lm_positions", + "masked_lm_ids", "masked_lm_weights"], shuffle=False) + type_cast_op = C.TypeCast(mstype.int32) + ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) + ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) + ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) + ds = ds.map(input_columns="segment_ids", operations=type_cast_op) + ds = ds.map(input_columns="input_mask", operations=type_cast_op) + ds = ds.map(input_columns="input_ids", operations=type_cast_op) + # apply batch operations + batch_size = int(os.getenv('BATCH_SIZE', '16')) + ds = ds.batch(batch_size, drop_remainder=True) + ds = ds.repeat(repeat_count) + return ds + + +def weight_variable(shape): + """weight variable""" + np.random.seed(1) + ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32) + return Tensor(ones) + + +class ModelCallback(Callback): + def __init__(self): + super(ModelCallback, self).__init__() + self.loss_list = [] + self.overflow_list = [] + self.lossscale_list = [] + + def step_end(self, run_context): + cb_params = run_context.original_args() + self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0]) + self.overflow_list.append(cb_params.net_outputs[1].asnumpy()) + self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) + print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_bert_tdt(): + """test bert tdt""" + os.system(f"rm -rf kernel_meta") + np.random.seed(0) + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) + context.set_context(enable_graph_kernel=True) + ds = me_de_train_dataset() + config = get_config(version='large', batch_size=16) + netwithloss = BertNetworkWithLoss(config, True) + optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*ds.get_repeat_count(), + start_learning_rate=5e-5, end_learning_rate=1e-9, + power=10.0, warmup_steps=0, weight_decay=0.01) + scale_window = 3 + scale_manager = DynamicLossScaleManager(262144, 2, scale_window) + netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, + scale_update_cell=scale_manager.get_update_cell()) + netwithgrads.set_train(True) + model = Model(netwithgrads) + callback = ModelCallback() + params = netwithloss.trainable_params() + for param in params: + param.init_data() + value = param.default_input + name = param.name + if isinstance(value, Tensor): + if name.split('.')[-1] in ['weight']: + if name.split('.')[-3] in ['cls2']: + logger.info("***************** BERT param name is 1 {}".format(name)) + param.default_input = weight_variable(value.asnumpy().shape) + else: + logger.info("***************** BERT param name is 2 {}".format(name)) + tempshape = value.asnumpy().shape + shape = (tempshape[1], tempshape[0]) + weight_value = weight_variable(shape).asnumpy() + param.default_input = Tensor(np.transpose(weight_value, [1, 0])) + else: + logger.info("***************** BERT param name is 3 {}".format(name)) + param.default_input = weight_variable(value.asnumpy().shape) + model.train(1, ds, callbacks=callback, dataset_sink_mode=False) + + # assertion occurs while the loss value, overflow state or loss_scale value is wrong + loss_value = np.array(callback.loss_list) + expect_loss_value = [12.559319, 12.333815, 12.339806, 12.350235, 12.343947, 12.830965, 12.375336, 12.973715, + 12.57929, 12.7766905] + error = loss_value - expect_loss_value + print("loss value: {}".format(loss_value)) + print("error value: {}".format(error)) + assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) + + overflow = np.array(callback.overflow_list) + expect_overflow = [True, True, True, True, False, False, False, True, False, False] + print("overflow: {}".format(overflow)) + assert (overflow == expect_overflow).all() + + loss_scale = np.array(callback.lossscale_list) + expect_loss_scale = [131072.0, 65536.0, 32768.0, 16384.0, 16384.0, 16384.0, 32768.0, 16384.0, 16384.0, 16384.0] + print("loss scale: {}".format(loss_scale)) + assert np.allclose(loss_scale, expect_loss_scale, 0, 0) + + +if __name__ == '__main__': + test_bert_tdt() -- GitLab