diff --git a/mindspore/nn/layer/normalization.py b/mindspore/nn/layer/normalization.py index d43c1c8ab4057d488b3b5f65e6ce77571988e818..4aded20ab37429600ea4c6a7b9289b41e14f63c2 100644 --- a/mindspore/nn/layer/normalization.py +++ b/mindspore/nn/layer/normalization.py @@ -249,7 +249,7 @@ class LayerNorm(Cell): 'he_uniform', etc. Default: 'zeros'. Inputs: - - **input_x** (Tensor) - The shape of 'input_x' is input_shape = :math:`(x_1, x_2, ..., x_R)`, + - **input_x** (Tensor) - The shape of 'input_x' is :math:`(x_1, x_2, ..., x_R)`, and `input_shape[begin_norm_axis:]` is equal to `normalized_shape`. Outputs: diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 3dabf2ab0a15fc9174d3dd5108e6d693fcaf415f..ff6289a4ad71177a1e52ce237ad53d6db23eb624 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -443,7 +443,6 @@ class Transpose(PrimitiveWithInfer): Examples: >>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32) >>> perm = (0, 2, 1) - >>> expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]]) >>> transpose = Transpose() >>> output = transpose(input_tensor, perm) """ @@ -1634,7 +1633,7 @@ class Diag(PrimitiveWithInfer): Examples: >>> input_x = Tensor([1, 2, 3, 4]) >>> diag = P.Diag() - >>> diag(x) + >>> diag(input_x) [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], diff --git a/mindspore/ops/operations/control_ops.py b/mindspore/ops/operations/control_ops.py index 1bffc09c0437c5854ac03061098d469fb2b41697..167739b89aa6fc3e1c135e2d8da28b01c5e26c57 100644 --- a/mindspore/ops/operations/control_ops.py +++ b/mindspore/ops/operations/control_ops.py @@ -107,8 +107,8 @@ class GeSwitch(PrimitiveWithInfer): >>> ret = self.merge((add_ret, sq_ret)) >>> return ret[0] >>> - >>> x = Tensor(x_init, dtype=mindspore.float32) - >>> y = Tensor(y_init, dtype=mindspore.float32) + >>> x = Tensor(10.0, dtype=mindspore.float32) + >>> y = Tensor(5.0, dtype=mindspore.float32) >>> net = Net() >>> output = net(x, y) """ diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index b7373416f9601ebf038217755ed140d80453a4f3..97a992ca05aef3e24060a957dd34ea14ea8272f8 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -140,6 +140,7 @@ class AssignAdd(PrimitiveWithInfer): Examples: >>> class Net(Cell): >>> def __init__(self): + >>> super(Net, self).__init__() >>> self.AssignAdd = P.AssignAdd() >>> self.inputdata = Parameter(initializer(1, [1], mindspore.int64), name="global_step") >>> @@ -272,7 +273,7 @@ class ReduceMean(_Reduce): Examples: >>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) - >>> op = ReduceMean(keep_dims=True) + >>> op = P.ReduceMean(keep_dims=True) >>> output = op(data, 1) """ @@ -304,7 +305,7 @@ class ReduceSum(_Reduce): Examples: >>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) - >>> op = ReduceSum(keep_dims=True) + >>> op = P.ReduceSum(keep_dims=True) >>> output = op(data, 1) """ @@ -337,7 +338,7 @@ class ReduceAll(_Reduce): Examples: >>> data = Tensor(np.array([[True, False], [True, True]])) - >>> op = ReduceAll(keep_dims=True) + >>> op = P.ReduceAll(keep_dims=True) >>> output = op(data, 1) """ @@ -373,7 +374,7 @@ class ReduceMax(_Reduce): Examples: >>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) - >>> op = ReduceMax(keep_dims=True) + >>> op = P.ReduceMax(keep_dims=True) >>> output = op(data, 1) """ @@ -406,7 +407,7 @@ class ReduceMin(_Reduce): Examples: >>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) - >>> op = ReduceMin(keep_dims=True) + >>> op = P.ReduceMin(keep_dims=True) >>> output = op(data, 1) """ @@ -438,7 +439,7 @@ class ReduceProd(_Reduce): Examples: >>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) - >>> op = ReduceProd(keep_dims=True) + >>> op = P.ReduceProd(keep_dims=True) >>> output = op(data, 1) """ @@ -460,13 +461,13 @@ class CumProd(PrimitiveWithInfer): Examples: >>> data = Tensor(np.array([a, b, c]).astype(np.float32)) - >>> op0 = CumProd() + >>> op0 = P.CumProd() >>> output = op0(data, 0) # output=[a, a * b, a * b * c] - >>> op1 = CumProd(exclusive=True) + >>> op1 = P.CumProd(exclusive=True) >>> output = op1(data, 0) # output=[1, a, a * b] - >>> op2 = CumProd(reverse=True) + >>> op2 = P.CumProd(reverse=True) >>> output = op2(data, 0) # output=[a * b * c, b * c, c] - >>> op3 = CumProd(exclusive=True, reverse=True) + >>> op3 = P.CumProd(exclusive=True, reverse=True) >>> output = op3(data, 0) # output=[b * c, c, 1] """ @prim_attr_register @@ -506,7 +507,7 @@ class MatMul(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32) >>> input_y = Tensor(np.ones(shape=[3, 4]), mindspore.float32) - >>> matmul = MatMul() + >>> matmul = P.MatMul() >>> output = matmul(input_x, input_y) """ @@ -582,12 +583,12 @@ class BatchMatMul(MatMul): Examples: >>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32) >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) - >>> batmatmul = BatchMatMul() + >>> batmatmul = P.BatchMatMul() >>> output = batmatmul(input_x, input_y) >>> >>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32) >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) - >>> batmatmul = BatchMatMul(transpose_a=True) + >>> batmatmul = P.BatchMatMul(transpose_a=True) >>> output = batmatmul(input_x, input_y) """ @@ -621,7 +622,7 @@ class CumSum(PrimitiveWithInfer): Examples: >>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32)) - >>> cumsum = CumSum() + >>> cumsum = P.CumSum() >>> output = cumsum(input, 1) [[ 3. 7. 13. 23.] [ 1. 7. 14. 23.] @@ -666,7 +667,7 @@ class AddN(PrimitiveWithInfer): >>> class NetAddN(nn.Cell): >>> def __init__(self): >>> super(NetAddN, self).__init__() - >>> self.addN = AddN() + >>> self.addN = P.AddN() >>> >>> def construct(self, *z): >>> return self.addN(z) @@ -748,7 +749,7 @@ class Sub(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) - >>> sub = Sub() + >>> sub = P.Sub() >>> sub(input_x, input_y) [-3, -3, -3] """ @@ -775,7 +776,7 @@ class Mul(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) - >>> mul = Mul() + >>> mul = P.Mul() >>> mul(input_x, input_y) [4, 10, 18] """ @@ -793,7 +794,7 @@ class Square(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) - >>> square = Square() + >>> square = P.Square() >>> square(input_x) [1.0, 4.0, 9.0] """ @@ -823,7 +824,7 @@ class Rsqrt(PrimitiveWithInfer): Examples: >>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32) - >>> rsqrt = Rsqrt() + >>> rsqrt = P.Rsqrt() >>> rsqrt(input_tensor) [[0.5, 0.5], [0.333333, 0.333333]] """ @@ -853,7 +854,7 @@ class Sqrt(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32) - >>> sqrt = Sqrt() + >>> sqrt = P.Sqrt() >>> sqrt(input_x) [1.0, 2.0, 3.0] """ @@ -883,7 +884,7 @@ class Reciprocal(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) - >>> reciprocal = Reciprocal() + >>> reciprocal = P.Reciprocal() >>> reciprocal(input_x) [1.0, 0.5, 0.25] """ @@ -916,13 +917,13 @@ class Pow(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) >>> input_y = 3.0 - >>> pow = Pow() + >>> pow = P.Pow() >>> pow(input_x, input_y) [1.0, 8.0, 64.0] >>> >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) >>> input_y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32) - >>> pow = Pow() + >>> pow = P.Pow() >>> pow(input_x, input_y) [1.0, 16.0, 64.0] """ @@ -952,7 +953,7 @@ class Exp(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) - >>> exp = Exp() + >>> exp = P.Exp() >>> exp(input_x) [ 2.71828183, 7.3890561 , 54.59815003] """ @@ -982,7 +983,7 @@ class Log(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) - >>> log = Log() + >>> log = P.Log() >>> log(input_x) [0.0, 0.69314718, 1.38629436] """ @@ -1020,7 +1021,7 @@ class Minimum(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) - >>> minimum = Minimum() + >>> minimum = P.Minimum() >>> minimum(input_x, input_y) [1.0, 2.0, 3.0] """ @@ -1047,7 +1048,7 @@ class Maximum(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) - >>> maximum = Maximum() + >>> maximum = P.Maximum() >>> maximum(input_x, input_y) [4.0, 5.0, 6.0] """ @@ -1074,7 +1075,7 @@ class RealDiv(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) - >>> realdiv = RealDiv() + >>> realdiv = P.RealDiv() >>> realdiv(input_x, input_y) [0.25, 0.4, 0.5] """ @@ -1113,9 +1114,8 @@ class Div(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) - >>> div = Div() + >>> div = P.Div() >>> div(input_x, input_y) - [-2.0, 2.0, 2.0] """ def infer_value(self, x, y): @@ -1147,7 +1147,7 @@ class FloorDiv(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) - >>> floor_div = FloorDiv() + >>> floor_div = P.FloorDiv() >>> floor_div(input_x, input_y) [0, 1, -1] """ @@ -1165,7 +1165,7 @@ class Floor(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32) - >>> floor = Floor() + >>> floor = P.Floor() >>> floor(input_x) [1.0, 2.0, -2.0] """ @@ -1277,13 +1277,13 @@ class Equal(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) - >>> equal = Equal() + >>> equal = P.Equal() >>> equal(input_x, 2.0) [False, True, False] >>> >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) - >>> equal = Equal() + >>> equal = P.Equal() >>> equal(input_x, input_y) [True, True, False] """ @@ -1308,7 +1308,7 @@ class EqualCount(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) - >>> equal_count = EqualCount() + >>> equal_count = P.EqualCount() >>> equal_count(input_x, input_y) [2] """ @@ -1347,13 +1347,13 @@ class NotEqual(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) - >>> not_equal = NotEqual() + >>> not_equal = P.NotEqual() >>> not_equal(input_x, 2.0) [True, False, True] >>> >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) - >>> not_equal = NotEqual() + >>> not_equal = P.NotEqual() >>> not_equal(input_x, input_y) [False, False, True] """ @@ -1383,7 +1383,7 @@ class Greater(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) - >>> greater = Greater() + >>> greater = P.Greater() >>> greater(input_x, input_y) [False, True, False] """ @@ -1410,7 +1410,7 @@ class GreaterEqual(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) - >>> greater_equal = GreaterEqual() + >>> greater_equal = P.GreaterEqual() >>> greater_equal(input_x, input_y) [True, True, False] """ @@ -1437,7 +1437,7 @@ class Less(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) - >>> less = Less() + >>> less = P.Less() >>> less(input_x, input_y) [False, False, True] """ @@ -1464,7 +1464,7 @@ class LessEqual(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) - >>> less_equal = LessEqual() + >>> less_equal = P.LessEqual() >>> less_equal(input_x, input_y) [True, False, True] """ @@ -1482,7 +1482,7 @@ class LogicalNot(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) - >>> logical_not = LogicalNot() + >>> logical_not = P.LogicalNot() >>> logical_not(input_x) [False, True, False] """ @@ -1520,7 +1520,7 @@ class LogicalAnd(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) - >>> logical_and = LogicalAnd() + >>> logical_and = P.LogicalAnd() >>> logical_and(input_x, input_y) [True, False, False] """ @@ -1549,7 +1549,7 @@ class LogicalOr(_LogicBinaryOp): Examples: >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) - >>> logical_or = LogicalOr() + >>> logical_or = P.LogicalOr() >>> logical_or(input_x, input_y) [True, True, True] """ @@ -1571,7 +1571,7 @@ class NPUAllocFloatStatus(PrimitiveWithInfer): Tensor, has the shape of `(8,)`. Examples: - >>> alloc_status = NPUAllocFloatStatus() + >>> alloc_status = P.NPUAllocFloatStatus() >>> init = alloc_status() Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32) """ @@ -1603,8 +1603,8 @@ class NPUGetFloatStatus(PrimitiveWithInfer): Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero. Examples: - >>> alloc_status = NPUAllocFloatStatus() - >>> get_status = NPUGetFloatStatus() + >>> alloc_status = P.NPUAllocFloatStatus() + >>> get_status = P.NPUGetFloatStatus() >>> init = alloc_status() >>> flag = get_status(init) Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32) @@ -1643,9 +1643,9 @@ class NPUClearFloatStatus(PrimitiveWithInfer): Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero. Examples: - >>> alloc_status = NPUAllocFloatStatus() - >>> get_status = NPUGetFloatStatus() - >>> clear_status = NPUClearFloatStatus() + >>> alloc_status = P.NPUAllocFloatStatus() + >>> get_status = P.NPUGetFloatStatus() + >>> clear_status = P.NPUClearFloatStatus() >>> init = alloc_status() >>> flag = get_status(init) >>> clear = clear_status(init) @@ -1679,7 +1679,7 @@ class Cos(PrimitiveWithInfer): Tensor, has the same shape as `input_x`. Examples: - >>> cos = Cos() + >>> cos = P.Cos() >>> X = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), ms.float32) >>> output = cos(X) """ @@ -1708,8 +1708,8 @@ class ACos(PrimitiveWithInfer): Tensor, has the same shape as `input_x`. Examples: - >>> acos = ACos() - >>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), ms.float32) + >>> acos = P.ACos() + >>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32) >>> output = acos(X) """ @@ -1737,9 +1737,9 @@ class Sin(PrimitiveWithInfer): Tensor, has the same shape as `input_x`. Examples: - >>> sin = Sin() - >>> X = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), ms.float32) - >>> output = sin(X) + >>> sin = P.Sin() + >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), ms.float32) + >>> output = sin(input_x) """ @prim_attr_register @@ -1789,7 +1789,7 @@ class NMSWithMask(PrimitiveWithInfer): >>> bbox[:, 2] += bbox[:, 0] >>> bbox[:, 3] += bbox[:, 1] >>> inputs = Tensor(bbox) - >>> nms = NMSWithMask(0.5) + >>> nms = P.NMSWithMask(0.5) >>> output_boxes, indices, mask = nms(inputs) """ @@ -1824,7 +1824,7 @@ class Abs(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32) - >>> abs = Abs() + >>> abs = P.Abs() >>> abs(input_x) [1.0, 1.0, 0.0] """ @@ -1867,7 +1867,7 @@ class Sign(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32) - >>> sign = Sign() + >>> sign = P.Sign() >>> output = sign(input_x) [[1.0, 0.0, -1.0]] """ @@ -1897,7 +1897,7 @@ class Round(PrimitiveWithInfer): Examples: >>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32) - >>> round = Round() + >>> round = P.Round() >>> round(input_x) [1.0, 2.0, 2.0, 2.0, -4.0] """ @@ -1932,7 +1932,7 @@ class Atan2(_MathBinaryOp): Examples: >>> input_x = Tensor(np.array([[0, 1]]), mstype.float32) >>> input_y = Tensor(np.array([[1, 1]]), mstype.float32) - >>> atan2 = Atan2() + >>> atan2 = P.Atan2() >>> atan2(input_x, input_y) [[0. 0.7853982]] """ diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 93a07880a2aa56a2969d8160fb9cd7d661d75955..952f7fc0d6b48b86dabe93d331fb9484cca48d83 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -1089,9 +1089,10 @@ class TopK(PrimitiveWithInfer): - **indices** (Tensor) - The indices of values within the last dimension of input. Examples: - >>> topk = TopK(sorted=True) - >>> x = Tensor(np.array([1, 2, 3, 4, 5]).astype(np.float16)) - >>> values, indices = topk(x) + >>> topk = P.TopK(sorted=True) + >>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16)) + >>> k = 3 + >>> values, indices = topk(input_x, k) >>> assert values == Tensor(np.array([5, 4, 3])) >>> assert indices == Tensor(np.array([4, 3, 2])) """