Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
c956dfff
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c956dfff
编写于
6月 04, 2020
作者:
Y
yujianfeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add SparseAdam and SparseLazyAdam cpu kernel
上级
42b0d49d
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
435 addition
and
9 deletion
+435
-9
mindspore/ccsrc/kernel/common_utils.cc
mindspore/ccsrc/kernel/common_utils.cc
+7
-4
mindspore/ccsrc/kernel/cpu/cpu_kernel.h
mindspore/ccsrc/kernel/cpu/cpu_kernel.h
+1
-0
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
+131
-0
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
+66
-0
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc
+8
-5
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc
...ore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc
+113
-0
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h
...pore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h
+63
-0
tests/st/ops/cpu/test_sparse_apply_adam_op.py
tests/st/ops/cpu/test_sparse_apply_adam_op.py
+46
-0
未找到文件。
mindspore/ccsrc/kernel/common_utils.cc
浏览文件 @
c956dfff
...
...
@@ -559,21 +559,24 @@ void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGr
size_t
unique_indices_size
=
0
;
for
(
size_t
i
=
0
;
i
<
origin_sparse_grad
.
indices_size_
;
++
i
)
{
int
index
=
origin_sparse_grad
.
indices_
[
i
];
if
(
index
<
0
||
(
size_t
)
index
>=
first_dim
)
{
if
(
index
<
0
||
IntToSize
(
index
)
>=
first_dim
)
{
continue
;
}
auto
iter
=
index_map
.
find
(
index
);
if
(
iter
==
index_map
.
end
())
{
index_map
[
index
]
=
unique_indices_size
;
unique_grad
->
indices_
[
unique_indices_size
]
=
index
;
for
(
size_t
j
=
unique_indices_size
*
outer_dim
,
k
=
i
*
outer_dim
;
j
<
(
unique_indices_size
+
1
)
*
outer_dim
;
++
j
,
++
k
)
{
size_t
start_index
=
unique_indices_size
*
outer_dim
;
size_t
end_index
=
start_index
+
outer_dim
;
for
(
size_t
j
=
start_index
,
k
=
i
*
outer_dim
;
j
<
end_index
;
++
j
,
++
k
)
{
unique_grad
->
value_
[
j
]
=
origin_sparse_grad
.
value_
[
k
];
}
unique_indices_size
++
;
}
else
{
size_t
first_index
=
iter
->
second
;
for
(
size_t
j
=
first_index
*
outer_dim
,
k
=
i
*
outer_dim
;
j
<
(
first_index
+
1
)
*
outer_dim
;
++
j
,
++
k
)
{
size_t
start_index
=
first_index
*
outer_dim
;
size_t
end_index
=
start_index
+
outer_dim
;
for
(
size_t
j
=
start_index
,
k
=
i
*
outer_dim
;
j
<
end_index
;
++
j
,
++
k
)
{
unique_grad
->
value_
[
j
]
+=
origin_sparse_grad
.
value_
[
k
];
}
}
...
...
mindspore/ccsrc/kernel/cpu/cpu_kernel.h
浏览文件 @
c956dfff
...
...
@@ -49,6 +49,7 @@ const char AXIS[] = "axis";
const
char
BEGIN
[]
=
"begin"
;
const
char
END
[]
=
"end"
;
const
char
SIZE
[]
=
"size"
;
const
char
USE_NESTEROV
[]
=
"use_nesterov"
;
class
CPUKernel
:
public
kernel
::
KernelMod
{
public:
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
0 → 100644
浏览文件 @
c956dfff
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/sparse_apply_adam_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace
mindspore
{
namespace
kernel
{
namespace
{
constexpr
size_t
kSparseApplyAdamInputSize
=
11
;
}
// namespace
void
SparseApplyAdamCPUKernel
::
InitKernel
(
const
CNodePtr
&
kernel_node
)
{
MS_EXCEPTION_IF_NULL
(
kernel_node
);
std
::
vector
<
size_t
>
var_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
std
::
vector
<
size_t
>
m_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
1
);
std
::
vector
<
size_t
>
v_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
2
);
std
::
vector
<
size_t
>
grad_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
9
);
std
::
vector
<
size_t
>
indices_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
10
);
if
(
!
IsSameShape
(
var_shape
,
m_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and m should have the same shape"
;
}
if
(
!
IsSameShape
(
var_shape
,
v_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and v should have the same shape"
;
}
if
(
var_shape
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"var must be at least 1D"
;
}
var_first_dim_size_
=
var_shape
[
0
];
for
(
size_t
i
=
1
;
i
<
var_shape
.
size
();
++
i
)
{
if
(
var_shape
[
i
]
!=
grad_shape
[
i
])
{
MS_LOG
(
EXCEPTION
)
<<
"The shape of var and grad must equal in dimension "
<<
i
;
}
var_outer_dim_size_
*=
var_shape
[
i
];
}
if
(
indices_shape
.
size
()
!=
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"indices must be 1D"
;
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
ERROR
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
if
(
AnfAlgo
::
HasNodeAttr
(
USE_NESTEROV
,
kernel_node
))
{
use_nesterov_
=
AnfAlgo
::
GetNodeAttr
<
bool
>
(
kernel_node
,
"use_nesterov"
);
}
}
void
SparseApplyAdamCPUKernel
::
UpdateSparseMomentum
(
const
SparseGradient
&
unique_sparse_grad
,
float
*
m
,
float
*
m_t
,
float
*
v
,
float
beta1
,
float
beta2
)
{
MS_EXCEPTION_IF_NULL
(
m
);
MS_EXCEPTION_IF_NULL
(
m_t
);
MS_EXCEPTION_IF_NULL
(
v
);
for
(
size_t
i
=
0
;
i
<
unique_sparse_grad
.
indices_size_
;
++
i
)
{
int
index
=
unique_sparse_grad
.
indices_
[
i
];
if
(
index
<
0
||
IntToSize
(
index
)
>=
var_first_dim_size_
)
{
MS_LOG
(
EXCEPTION
)
<<
"Index "
<<
index
<<
" in indices is out of range after unique process"
;
}
size_t
start_index
=
var_outer_dim_size_
*
index
;
size_t
end_index
=
start_index
+
var_outer_dim_size_
;
for
(
size_t
j
=
start_index
,
k
=
var_outer_dim_size_
*
i
;
j
<
end_index
;
++
j
,
++
k
)
{
auto
summed_grad
=
unique_sparse_grad
.
value_
[
k
];
m
[
j
]
+=
(
1
-
beta1
)
*
summed_grad
;
v
[
j
]
+=
(
1
-
beta2
)
*
summed_grad
*
summed_grad
;
if
(
use_nesterov_
)
{
m_t
[
j
]
=
m
[
j
]
*
beta1
+
(
1
-
beta1
)
*
summed_grad
;
}
}
}
}
bool
SparseApplyAdamCPUKernel
::
Launch
(
const
std
::
vector
<
kernel
::
AddressPtr
>
&
inputs
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*workspace*/
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*outputs*/
)
{
if
(
inputs
.
size
()
<
kSparseApplyAdamInputSize
)
{
MS_LOG
(
EXCEPTION
)
<<
"Error input size!"
;
}
auto
var
=
reinterpret_cast
<
float
*>
(
inputs
[
0
]
->
addr
);
auto
m
=
reinterpret_cast
<
float
*>
(
inputs
[
1
]
->
addr
);
auto
v
=
reinterpret_cast
<
float
*>
(
inputs
[
2
]
->
addr
);
auto
beta1_power
=
reinterpret_cast
<
float
*>
(
inputs
[
3
]
->
addr
)[
0
];
if
(
beta1_power
==
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"The beta1_power should not be 1"
;
}
auto
beta2_power
=
reinterpret_cast
<
float
*>
(
inputs
[
4
]
->
addr
)[
0
];
auto
lr
=
reinterpret_cast
<
float
*>
(
inputs
[
5
]
->
addr
)[
0
];
auto
beta1
=
reinterpret_cast
<
float
*>
(
inputs
[
6
]
->
addr
)[
0
];
auto
beta2
=
reinterpret_cast
<
float
*>
(
inputs
[
7
]
->
addr
)[
0
];
auto
epsilon
=
reinterpret_cast
<
float
*>
(
inputs
[
8
]
->
addr
)[
0
];
auto
grad
=
reinterpret_cast
<
float
*>
(
inputs
[
9
]
->
addr
);
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
10
]
->
addr
);
std
::
vector
<
float
>
new_grad
;
new_grad
.
reserve
(
indices_size_
*
var_outer_dim_size_
);
std
::
vector
<
int
>
new_indices
;
new_indices
.
reserve
(
indices_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
.
data
(),
new_indices
.
data
(),
indices_size_
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
size_t
total_dim_size
=
var_first_dim_size_
*
var_outer_dim_size_
;
// Update momentum
lr
=
lr
*
std
::
sqrt
(
1
-
beta2_power
)
/
(
1
-
beta1_power
);
for
(
size_t
i
=
0
;
i
<
total_dim_size
;
++
i
)
{
m
[
i
]
*=
beta1
;
v
[
i
]
*=
beta2
;
}
std
::
vector
<
float
>
m_t
(
m
,
m
+
total_dim_size
);
UpdateSparseMomentum
(
unique_sparse_grad
,
m
,
m_t
.
data
(),
v
,
beta1
,
beta2
);
// Update weight
if
(
use_nesterov_
)
{
m
=
m_t
.
data
();
}
for
(
size_t
i
=
0
;
i
<
total_dim_size
;
++
i
)
{
var
[
i
]
-=
lr
*
m
[
i
]
/
(
std
::
sqrt
(
v
[
i
])
+
epsilon
);
}
return
true
;
}
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
0 → 100644
浏览文件 @
c956dfff
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
#include "kernel/common_utils.h"
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyAdamCPUKernel
:
public
CPUKernel
{
public:
SparseApplyAdamCPUKernel
()
=
default
;
~
SparseApplyAdamCPUKernel
()
override
=
default
;
void
InitKernel
(
const
CNodePtr
&
kernel_node
)
override
;
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
private:
void
UpdateSparseMomentum
(
const
SparseGradient
&
unique_sparse_grad
,
float
*
m
,
float
*
m_t
,
float
*
v
,
float
beta1
,
float
beta2
);
size_t
indices_size_
{
0
};
size_t
var_first_dim_size_
{
0
};
size_t
var_outer_dim_size_
{
1
};
bool
use_nesterov_
{
false
};
};
MS_REG_CPU_KERNEL
(
SparseApplyAdam
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeInt32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
SparseApplyAdamCPUKernel
);
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc
浏览文件 @
c956dfff
...
...
@@ -84,19 +84,22 @@ bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
auto
grad
=
reinterpret_cast
<
float
*>
(
inputs
[
3
]
->
addr
);
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
4
]
->
addr
);
std
::
vector
<
float
>
new_grad
(
indices_size_
*
var_outer_dim_size_
);
std
::
vector
<
int
>
new_indices
(
indices_size_
);
std
::
vector
<
float
>
new_grad
;
new_grad
.
reserve
(
indices_size_
*
var_outer_dim_size_
);
std
::
vector
<
int
>
new_indices
;
new_indices
.
reserve
(
indices_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
.
data
(),
new_indices
.
data
(),
indices_size_
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
for
(
size_t
i
=
0
;
i
<
unique_sparse_grad
.
indices_size_
;
++
i
)
{
int
index
=
unique_sparse_grad
.
indices_
[
i
];
if
(
index
<
0
||
(
size_t
)
index
>=
var_first_dim_size_
)
{
if
(
index
<
0
||
IntToSize
(
index
)
>=
var_first_dim_size_
)
{
MS_LOG
(
EXCEPTION
)
<<
"Index "
<<
index
<<
" in indices is out of range after unique process"
;
}
for
(
size_t
j
=
var_outer_dim_size_
*
index
,
k
=
var_outer_dim_size_
*
i
;
j
<
var_outer_dim_size_
*
(
index
+
1
);
++
j
,
++
k
)
{
size_t
start_index
=
var_outer_dim_size_
*
index
;
size_t
end_index
=
start_index
+
var_outer_dim_size_
;
for
(
size_t
j
=
start_index
,
k
=
var_outer_dim_size_
*
i
;
j
<
end_index
;
++
j
,
++
k
)
{
auto
summed_grad
=
unique_sparse_grad
.
value_
[
k
];
auto
accum_new
=
accum
[
j
]
+
summed_grad
*
summed_grad
;
if
(
lr_power_
==
-
0.5
)
{
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc
0 → 100644
浏览文件 @
c956dfff
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h"
#include "kernel/common_utils.h"
#include "device/cpu/cpu_device_address.h"
namespace
mindspore
{
namespace
kernel
{
namespace
{
constexpr
size_t
kSparseApplyLazyAdamInputSize
=
11
;
}
// namespace
void
SparseApplyLazyAdamCPUKernel
::
InitKernel
(
const
CNodePtr
&
kernel_node
)
{
MS_EXCEPTION_IF_NULL
(
kernel_node
);
std
::
vector
<
size_t
>
var_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
std
::
vector
<
size_t
>
m_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
1
);
std
::
vector
<
size_t
>
v_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
2
);
std
::
vector
<
size_t
>
grad_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
9
);
std
::
vector
<
size_t
>
indices_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
10
);
if
(
!
IsSameShape
(
var_shape
,
m_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and m should have the same shape"
;
}
if
(
!
IsSameShape
(
var_shape
,
v_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and v should have the same shape"
;
}
if
(
var_shape
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"var must be at least 1D"
;
}
var_first_dim_size_
=
var_shape
[
0
];
for
(
size_t
i
=
1
;
i
<
var_shape
.
size
();
++
i
)
{
if
(
var_shape
[
i
]
!=
grad_shape
[
i
])
{
MS_LOG
(
EXCEPTION
)
<<
"The shape of var and grad must equal in dimension "
<<
i
;
}
var_outer_dim_size_
*=
var_shape
[
i
];
}
if
(
indices_shape
.
size
()
!=
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"indices must be 1D"
;
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
ERROR
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
if
(
AnfAlgo
::
HasNodeAttr
(
USE_NESTEROV
,
kernel_node
))
{
use_nesterov_
=
AnfAlgo
::
GetNodeAttr
<
bool
>
(
kernel_node
,
"use_nesterov"
);
}
}
bool
SparseApplyLazyAdamCPUKernel
::
Launch
(
const
std
::
vector
<
kernel
::
AddressPtr
>
&
inputs
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*workspace*/
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*outputs*/
)
{
if
(
inputs
.
size
()
<
kSparseApplyLazyAdamInputSize
)
{
MS_LOG
(
EXCEPTION
)
<<
"Error input size!"
;
}
auto
var
=
reinterpret_cast
<
float
*>
(
inputs
[
0
]
->
addr
);
auto
m
=
reinterpret_cast
<
float
*>
(
inputs
[
1
]
->
addr
);
auto
v
=
reinterpret_cast
<
float
*>
(
inputs
[
2
]
->
addr
);
auto
beta1_power
=
reinterpret_cast
<
float
*>
(
inputs
[
3
]
->
addr
)[
0
];
if
(
beta1_power
==
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"The beta1_power should not be 1"
;
}
auto
beta2_power
=
reinterpret_cast
<
float
*>
(
inputs
[
4
]
->
addr
)[
0
];
auto
lr
=
reinterpret_cast
<
float
*>
(
inputs
[
5
]
->
addr
)[
0
];
auto
beta1
=
reinterpret_cast
<
float
*>
(
inputs
[
6
]
->
addr
)[
0
];
auto
beta2
=
reinterpret_cast
<
float
*>
(
inputs
[
7
]
->
addr
)[
0
];
auto
epsilon
=
reinterpret_cast
<
float
*>
(
inputs
[
8
]
->
addr
)[
0
];
auto
grad
=
reinterpret_cast
<
float
*>
(
inputs
[
9
]
->
addr
);
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
10
]
->
addr
);
std
::
vector
<
float
>
new_grad
;
new_grad
.
reserve
(
indices_size_
*
var_outer_dim_size_
);
std
::
vector
<
int
>
new_indices
;
new_indices
.
reserve
(
indices_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
.
data
(),
new_indices
.
data
(),
indices_size_
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
lr
=
lr
*
std
::
sqrt
(
1
-
beta2_power
)
/
(
1
-
beta1_power
);
for
(
size_t
i
=
0
;
i
<
unique_sparse_grad
.
indices_size_
;
++
i
)
{
int
index
=
unique_sparse_grad
.
indices_
[
i
];
if
(
index
<
0
||
IntToSize
(
index
)
>=
var_first_dim_size_
)
{
MS_LOG
(
EXCEPTION
)
<<
"Index "
<<
index
<<
" in indices is out of range"
;
}
size_t
start_index
=
var_outer_dim_size_
*
index
;
size_t
end_index
=
start_index
+
var_outer_dim_size_
;
for
(
size_t
j
=
start_index
,
k
=
var_outer_dim_size_
*
i
;
j
<
end_index
;
++
j
,
++
k
)
{
auto
summed_grad
=
unique_sparse_grad
.
value_
[
k
];
m
[
j
]
=
beta1
*
m
[
j
]
+
(
1
-
beta1
)
*
summed_grad
;
v
[
j
]
=
beta2
*
v
[
j
]
+
(
1
-
beta2
)
*
summed_grad
*
summed_grad
;
if
(
use_nesterov_
)
{
var
[
j
]
-=
lr
*
(
m
[
j
]
*
beta1
+
(
1
-
beta1
)
*
summed_grad
)
/
(
std
::
sqrt
(
v
[
j
])
+
epsilon
);
}
else
{
var
[
j
]
-=
lr
*
m
[
j
]
/
(
std
::
sqrt
(
v
[
j
])
+
epsilon
);
}
}
}
return
true
;
}
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h
0 → 100644
浏览文件 @
c956dfff
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_LAZY_ADAM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_LAZY_ADAM_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyLazyAdamCPUKernel
:
public
CPUKernel
{
public:
SparseApplyLazyAdamCPUKernel
()
=
default
;
~
SparseApplyLazyAdamCPUKernel
()
override
=
default
;
void
InitKernel
(
const
CNodePtr
&
kernel_node
)
override
;
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
private:
size_t
indices_size_
{
0
};
size_t
var_first_dim_size_
{
0
};
size_t
var_outer_dim_size_
{
1
};
bool
use_nesterov_
{
false
};
};
MS_REG_CPU_KERNEL
(
SparseApplyLazyAdam
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeInt32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
SparseApplyLazyAdamCPUKernel
);
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_LAZY_ADAM_CPU_KERNEL_H_
tests/st/ops/cpu/test_sparse_apply_adam_op.py
0 → 100644
浏览文件 @
c956dfff
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.common.parameter
import
Parameter
from
mindspore.ops
import
operations
as
P
import
mindspore.common.dtype
as
mstype
class
Net
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
Net
,
self
).
__init__
()
self
.
sparse_apply_adam
=
P
.
SparseApplyAdam
()
self
.
var
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"var"
)
self
.
m
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"m"
)
self
.
v
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"v"
)
def
construct
(
self
,
beta1_power
,
beta2_power
,
lr
,
beta1
,
beta2
,
epsilon
,
grad
,
indices
):
out
=
self
.
sparse_apply_adam
(
self
.
var
,
self
.
m
,
self
.
v
,
beta1_power
,
beta2_power
,
lr
,
beta1
,
beta2
,
epsilon
,
grad
,
indices
)
return
out
def
test_net
():
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
sparse_apply_adam
=
Net
()
output
=
sparse_apply_adam
(
0.9
,
0.999
,
0.001
,
0.9
,
0.999
,
1e-8
,
gradient
,
indices
)
print
(
output
[
0
].
asnumpy
())
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录