Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
c7865966
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c7865966
编写于
5月 15, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 15, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1156 Add batch_norm grad infer fission pass
Merge pull request !1156 from YuJianfeng/master
上级
8a853cec
2b061c84
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
382 addition
and
0 deletion
+382
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.cc
...tivate/ascend/ir_fission/batch_norm_grad_infer_fission.cc
+169
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.h
...ctivate/ascend/ir_fission/batch_norm_grad_infer_fission.h
+50
-0
mindspore/ccsrc/utils/utils.h
mindspore/ccsrc/utils/utils.h
+1
-0
tests/ut/cpp/pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission_test.cc
...e/ascend/ir_fission/batch_norm_grad_infer_fission_test.cc
+91
-0
tests/ut/cpp/python_input/gtest_input/pre_activate/batch_norm_grad_infer_fission_test.py
..._input/pre_activate/batch_norm_grad_infer_fission_test.py
+71
-0
未找到文件。
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.cc
0 → 100644
浏览文件 @
c7865966
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.h"
#include <vector>
#include "pre_activate/common/helper.h"
#include "session/anf_runtime_algorithm.h"
namespace
mindspore
{
namespace
opt
{
namespace
{
constexpr
size_t
kBatchNormGradInferOutputNum
=
3
;
bool
CheckOutputsIndex
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
node
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
node
);
auto
manager
=
func_graph
->
manager
();
MS_EXCEPTION_IF_NULL
(
manager
);
if
(
manager
->
node_users
().
find
(
node
)
==
manager
->
node_users
().
end
())
{
MS_LOG
(
DEBUG
)
<<
"The node "
<<
node
->
DebugString
()
<<
" should have some outputs"
;
return
false
;
}
for
(
const
auto
&
node_index
:
manager
->
node_users
()[
node
])
{
AnfNodePtr
output
=
node_index
.
first
;
MS_EXCEPTION_IF_NULL
(
output
);
auto
tuple_getiterm_cnode
=
output
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
tuple_getiterm_cnode
);
auto
index_node
=
tuple_getiterm_cnode
->
input
(
kInputNodeOutputIndexInTupleGetItem
);
MS_EXCEPTION_IF_NULL
(
index_node
);
auto
value_node
=
index_node
->
cast
<
ValueNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
value_node
);
int
index
=
GetValue
<
int
>
(
value_node
->
value
());
if
(
index
==
kBatchNormGradInferOutputNum
||
index
==
kBatchNormGradInferOutputNum
+
1
)
{
MS_LOG
(
DEBUG
)
<<
"The output "
<<
index
<<
" of node "
<<
node
->
DebugString
()
<<
" is not null, no need change"
;
return
false
;
}
}
return
true
;
}
}
// namespace
AnfNodePtr
BatchNormGradInferFission
::
CreateBNInferGrad
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn_grad
,
const
EquivPtr
&
equiv
)
const
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
bn_grad
);
MS_EXCEPTION_IF_NULL
(
equiv
);
// Set inputs
auto
iter_input0
=
(
*
equiv
).
find
(
input0_var_
);
if
(
iter_input0
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input0 var after matched."
;
}
auto
iter_input2
=
(
*
equiv
).
find
(
input2_var_
);
if
(
iter_input2
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input2 var after matched."
;
}
auto
iter_input4
=
(
*
equiv
).
find
(
input4_var_
);
if
(
iter_input4
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input4 var after matched."
;
}
std
::
vector
<
AnfNodePtr
>
bn_infer_grad_inputs
=
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
kBNInferGradOpName
)),
utils
::
cast
<
AnfNodePtr
>
(
iter_input0
->
second
),
utils
::
cast
<
AnfNodePtr
>
(
iter_input2
->
second
),
utils
::
cast
<
AnfNodePtr
>
(
iter_input4
->
second
)};
auto
bn_infer_grad
=
func_graph
->
NewCNode
(
bn_infer_grad_inputs
);
MS_EXCEPTION_IF_NULL
(
bn_infer_grad
);
// Set abstract, the output of new node is taking the place of the 0th output of bn_grad.
auto
bn_grad_abstract_tuple
=
dyn_cast
<
abstract
::
AbstractTuple
>
(
bn_grad
->
abstract
());
MS_EXCEPTION_IF_NULL
(
bn_grad_abstract_tuple
);
if
(
bn_grad_abstract_tuple
->
elements
().
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"The abstract tuple of node "
<<
bn_grad
->
DebugString
()
<<
"should not be empty"
;
}
bn_infer_grad
->
set_abstract
(
bn_grad_abstract_tuple
->
elements
()[
0
]);
AnfAlgo
::
CopyNodeAttr
(
kAttrEpsilon
,
bn_grad
,
bn_infer_grad
);
bn_infer_grad
->
set_scope
(
bn_grad
->
scope
());
return
bn_infer_grad
;
}
AnfNodePtr
BatchNormGradInferFission
::
CreateBNTrainingUpdateGrad
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn_grad
,
const
EquivPtr
&
equiv
)
const
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
bn_grad
);
MS_EXCEPTION_IF_NULL
(
equiv
);
// Set inputs
auto
iter_input0
=
(
*
equiv
).
find
(
input0_var_
);
if
(
iter_input0
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input0 var after matched."
;
}
auto
iter_input1
=
(
*
equiv
).
find
(
input1_var_
);
if
(
iter_input1
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input1 var after matched."
;
}
auto
iter_input3
=
(
*
equiv
).
find
(
input3_var_
);
if
(
iter_input3
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input3 var after matched."
;
}
auto
iter_input4
=
(
*
equiv
).
find
(
input4_var_
);
if
(
iter_input4
==
(
*
equiv
).
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"The equiv map is expected to contains the input4 var after matched."
;
}
std
::
vector
<
AnfNodePtr
>
bn_training_update_grad_inputs
=
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
kBNTrainingUpdateGradOpName
)),
utils
::
cast
<
AnfNodePtr
>
(
iter_input0
->
second
),
utils
::
cast
<
AnfNodePtr
>
(
iter_input1
->
second
),
utils
::
cast
<
AnfNodePtr
>
(
iter_input3
->
second
),
utils
::
cast
<
AnfNodePtr
>
(
iter_input4
->
second
)};
auto
bn_training_update_grad
=
func_graph
->
NewCNode
(
bn_training_update_grad_inputs
);
MS_EXCEPTION_IF_NULL
(
bn_training_update_grad
);
// Set abstract, the outputs of new node are taking the place of the 1st and 2nd outputs of bn_grad.
auto
bn_grad_abstract_tuple
=
dyn_cast
<
abstract
::
AbstractTuple
>
(
bn_grad
->
abstract
());
MS_EXCEPTION_IF_NULL
(
bn_grad_abstract_tuple
);
if
(
bn_grad_abstract_tuple
->
elements
().
size
()
<
kBatchNormGradInferOutputNum
)
{
MS_LOG
(
EXCEPTION
)
<<
"The abstract tuple of node "
<<
bn_grad
->
DebugString
()
<<
"should not be less than 3"
;
}
std
::
vector
<
AbstractBasePtr
>
abstract_list
{
bn_grad_abstract_tuple
->
elements
()[
1
],
bn_grad_abstract_tuple
->
elements
()[
2
]};
auto
abstract_tuple
=
std
::
make_shared
<
abstract
::
AbstractTuple
>
(
abstract_list
);
bn_training_update_grad
->
set_abstract
(
abstract_tuple
);
AnfAlgo
::
CopyNodeAttr
(
kAttrEpsilon
,
bn_grad
,
bn_training_update_grad
);
bn_training_update_grad
->
set_scope
(
bn_grad
->
scope
());
return
bn_training_update_grad
;
}
const
BaseRef
BatchNormGradInferFission
::
DefinePattern
()
const
{
VarPtr
Xs
=
std
::
make_shared
<
SeqVar
>
();
return
VectorRef
({
prim
::
kPrimBatchNormGrad
,
input0_var_
,
input1_var_
,
input2_var_
,
input3_var_
,
input4_var_
,
Xs
});
}
const
AnfNodePtr
BatchNormGradInferFission
::
Process
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
node
,
const
EquivPtr
&
equiv
)
const
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
node
);
if
(
!
AnfAlgo
::
HasNodeAttr
(
kAttrIsTraining
,
node
->
cast
<
CNodePtr
>
()))
{
MS_LOG
(
DEBUG
)
<<
"The BatchNormGrad "
<<
node
->
DebugString
()
<<
" has no is_training attr, should not be changed"
;
return
nullptr
;
}
if
(
AnfAlgo
::
GetNodeAttr
<
bool
>
(
node
,
kAttrIsTraining
))
{
MS_LOG
(
DEBUG
)
<<
"The is_training attr value of "
<<
node
->
DebugString
()
<<
" is true, no need change"
;
return
nullptr
;
}
if
(
!
CheckOutputsIndex
(
func_graph
,
node
))
{
MS_LOG
(
DEBUG
)
<<
"The output 3 or 4 of BatchNormGrad is not null, no need change"
;
return
nullptr
;
}
AnfNodePtr
bn_infer_grad
=
CreateBNInferGrad
(
func_graph
,
node
,
equiv
);
AnfNodePtr
bn_training_update_grad
=
CreateBNTrainingUpdateGrad
(
func_graph
,
node
,
equiv
);
std
::
vector
<
AnfNodePtr
>
bn_training_update_grad_outputs
;
CreateMultipleOutputsOfAnfNode
(
func_graph
,
bn_training_update_grad
,
kBNTrainingUpdateGradOutputNum
,
&
bn_training_update_grad_outputs
);
if
(
bn_training_update_grad_outputs
.
size
()
!=
kBNTrainingUpdateGradOutputNum
)
{
MS_LOG
(
EXCEPTION
)
<<
"The output size of "
<<
bn_training_update_grad
<<
" should be "
<<
kBNTrainingUpdateGradOutputNum
<<
", but it is "
<<
bn_training_update_grad_outputs
.
size
();
}
std
::
vector
<
AnfNodePtr
>
make_tuple_inputs
=
{
NewValueNode
(
prim
::
kPrimMakeTuple
),
bn_infer_grad
,
bn_training_update_grad_outputs
[
0
],
bn_training_update_grad_outputs
[
1
]};
auto
make_tuple
=
func_graph
->
NewCNode
(
make_tuple_inputs
);
MS_EXCEPTION_IF_NULL
(
make_tuple
);
return
make_tuple
;
}
}
// namespace opt
}
// namespace mindspore
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.h
0 → 100644
浏览文件 @
c7865966
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_INFER_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_INFER_FISSION_H_
#include <memory>
#include "pre_activate/common/optimizer.h"
namespace
mindspore
{
namespace
opt
{
class
BatchNormGradInferFission
:
public
PatternProcessPass
{
public:
explicit
BatchNormGradInferFission
(
bool
multigraph
=
true
)
:
PatternProcessPass
(
"batch_norm_grad_infer_fission"
,
multigraph
),
input0_var_
(
std
::
make_shared
<
Var
>
()),
input1_var_
(
std
::
make_shared
<
Var
>
()),
input2_var_
(
std
::
make_shared
<
Var
>
()),
input3_var_
(
std
::
make_shared
<
Var
>
()),
input4_var_
(
std
::
make_shared
<
Var
>
())
{}
~
BatchNormGradInferFission
()
override
=
default
;
const
BaseRef
DefinePattern
()
const
override
;
const
AnfNodePtr
Process
(
const
FuncGraphPtr
&
,
const
AnfNodePtr
&
,
const
EquivPtr
&
)
const
override
;
private:
AnfNodePtr
CreateBNInferGrad
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn_grad
,
const
EquivPtr
&
equiv
)
const
;
AnfNodePtr
CreateBNTrainingUpdateGrad
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn_grad
,
const
EquivPtr
&
equiv
)
const
;
VarPtr
input0_var_
;
VarPtr
input1_var_
;
VarPtr
input2_var_
;
VarPtr
input3_var_
;
VarPtr
input4_var_
;
};
}
// namespace opt
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_INFER_FISSION_H_
mindspore/ccsrc/utils/utils.h
浏览文件 @
c7865966
...
...
@@ -139,6 +139,7 @@ constexpr auto kFusionOpConv2DBackpropInputAddNReluGradV2Name = "FusionOp_Conv2D
constexpr
auto
kLabelSetOpName
=
"LabelSet"
;
constexpr
auto
kLabelSwitchOpName
=
"LabelSwitch"
;
constexpr
auto
kLabelGotoOpName
=
"LabelGoto"
;
constexpr
auto
kBNInferGradOpName
=
"BNInferGrad"
;
// attr key name
constexpr
auto
kAttrInputNames
=
"input_names"
;
...
...
tests/ut/cpp/pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission_test.cc
0 → 100644
浏览文件 @
c7865966
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.h"
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
namespace
mindspore
{
namespace
opt
{
class
TestHWBatchNormGradInferFission
:
public
BackendCommon
{
public:
TestHWBatchNormGradInferFission
()
:
get_py_fun_
(
"gtest_input.pre_activate.batch_norm_grad_infer_fission_test"
,
true
)
{}
~
TestHWBatchNormGradInferFission
()
override
=
default
;
UT
::
PyFuncGraphFetcher
get_py_fun_
;
};
TEST_F
(
TestHWBatchNormGradInferFission
,
test_batch_norm_grad_infer_fission
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_batch_norm_grad_infer_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp_x
{
32
,
64
,
112
,
112
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp_x
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
5
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
pm
->
AddPass
(
std
::
make_shared
<
opt
::
BatchNormGradInferFission
>
());
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_batch_norm_grad_infer_fission"
,
"after"
);
EXPECT_TRUE
(
CheckEqualGraph
(
g_after
,
new_graph
));
}
TEST_F
(
TestHWBatchNormGradInferFission
,
test_batch_norm_grad_infer_no_fission1
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_batch_norm_grad_infer_fission"
,
"before_is_training"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp_x
{
32
,
64
,
112
,
112
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp_x
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
5
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
pm
->
AddPass
(
std
::
make_shared
<
opt
::
BatchNormGradInferFission
>
());
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg
,
new_graph
));
}
TEST_F
(
TestHWBatchNormGradInferFission
,
test_batch_norm_grad_infer_no_fission2
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_batch_norm_grad_infer_fission"
,
"before_output3_not_null"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp_x
{
32
,
64
,
112
,
112
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp_x
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
5
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
pm
->
AddPass
(
std
::
make_shared
<
opt
::
BatchNormGradInferFission
>
());
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg
,
new_graph
));
}
}
// namespace opt
}
// namespace mindspore
tests/ut/cpp/python_input/gtest_input/pre_activate/batch_norm_grad_infer_fission_test.py
0 → 100644
浏览文件 @
c7865966
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from
mindspore.ops.operations
import
_grad_ops
as
G
from
mindspore.ops
import
Primitive
make_tuple
=
Primitive
(
'make_tuple'
)
tuple_getitem
=
Primitive
(
'tuple_getitem'
)
BatchNormGradTraining
=
G
.
BatchNormGrad
(
is_training
=
True
)
BatchNormGradInfer
=
G
.
BatchNormGrad
(
is_training
=
False
)
BNInferGrad
=
Primitive
(
'BNInferGrad'
)
BNTrainingUpdateGrad
=
Primitive
(
'BNTrainingUpdateGrad'
)
class
FnDict
:
def
__init__
(
self
):
self
.
fnDict
=
{}
def
__call__
(
self
,
fn
):
self
.
fnDict
[
fn
.
__name__
]
=
fn
def
__getitem__
(
self
,
name
):
return
self
.
fnDict
[
name
]
def
test_batch_norm_grad_infer_fission
(
tag
):
fns
=
FnDict
()
@
fns
def
before
(
input0
,
input1
,
input2
,
input3
,
input4
):
batch_norm
=
BatchNormGradInfer
(
input0
,
input1
,
input2
,
input3
,
input4
)
outputs
=
make_tuple
(
tuple_getitem
(
batch_norm
,
0
),
tuple_getitem
(
batch_norm
,
1
),
tuple_getitem
(
batch_norm
,
2
))
output
=
tuple_getitem
(
outputs
,
0
)
return
output
@
fns
def
before_is_training
(
input0
,
input1
,
input2
,
input3
,
input4
):
batch_norm
=
BatchNormGradTraining
(
input0
,
input1
,
input2
,
input3
,
input4
)
outputs
=
make_tuple
(
tuple_getitem
(
batch_norm
,
0
),
tuple_getitem
(
batch_norm
,
1
),
tuple_getitem
(
batch_norm
,
2
))
output
=
tuple_getitem
(
outputs
,
0
)
return
output
@
fns
def
before_output3_not_null
(
input0
,
input1
,
input2
,
input3
,
input4
):
batch_norm
=
BatchNormGradInfer
(
input0
,
input1
,
input2
,
input3
,
input4
)
outputs
=
make_tuple
(
tuple_getitem
(
batch_norm
,
0
),
tuple_getitem
(
batch_norm
,
1
),
tuple_getitem
(
batch_norm
,
3
))
output
=
tuple_getitem
(
outputs
,
0
)
return
output
@
fns
def
after
(
input0
,
input1
,
input2
,
input3
,
input4
):
bn_infer_grad
=
BNInferGrad
(
input0
,
input2
,
input4
)
bn_training_update_grad
=
BNTrainingUpdateGrad
(
input0
,
input1
,
input3
,
input4
)
outputs
=
make_tuple
(
bn_infer_grad
,
tuple_getitem
(
bn_training_update_grad
,
0
),
tuple_getitem
(
bn_training_update_grad
,
1
))
new_outputs
=
make_tuple
(
tuple_getitem
(
outputs
,
0
),
tuple_getitem
(
outputs
,
1
),
tuple_getitem
(
outputs
,
2
))
output
=
tuple_getitem
(
new_outputs
,
0
)
return
make_tuple
(
output
)
return
fns
[
tag
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录