diff --git a/model_zoo/bert/pretrain_eval.py b/model_zoo/bert/pretrain_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..45b36482bc932fc88bca2af9a8143ccc11a992d7 --- /dev/null +++ b/model_zoo/bert/pretrain_eval.py @@ -0,0 +1,156 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +""" +Bert evaluation script. +""" + +import os +from src import BertModel, GetMaskedLMOutput +from evaluation_config import cfg, bert_net_cfg +import mindspore.common.dtype as mstype +from mindspore import context +from mindspore.common.tensor import Tensor +import mindspore.dataset as de +import mindspore.dataset.transforms.c_transforms as C +from mindspore.train.model import Model +from mindspore.train.serialization import load_checkpoint, load_param_into_net +import mindspore.nn as nn +from mindspore.nn.metrics import Metric +from mindspore.ops import operations as P +from mindspore.common.parameter import Parameter + +class myMetric(Metric): + ''' + Self-defined Metric as a callback. + ''' + def __init__(self): + super(myMetric, self).__init__() + self.clear() + + def clear(self): + self.total_num = 0 + self.acc_num = 0 + + def update(self, *inputs): + total_num = self._convert_data(inputs[0]) + acc_num = self._convert_data(inputs[1]) + self.total_num = total_num + self.acc_num = acc_num + + def eval(self): + return self.acc_num/self.total_num + + +class GetLogProbs(nn.Cell): + ''' + Get MaskedLM prediction scores + ''' + def __init__(self, config): + super(GetLogProbs, self).__init__() + self.bert = BertModel(config, False) + self.cls1 = GetMaskedLMOutput(config) + + def construct(self, input_ids, input_mask, token_type_id, masked_pos): + sequence_output, _, embedding_table = self.bert(input_ids, token_type_id, input_mask) + prediction_scores = self.cls1(sequence_output, embedding_table, masked_pos) + return prediction_scores + + +class BertPretrainEva(nn.Cell): + ''' + Evaluate MaskedLM prediction scores + ''' + def __init__(self, config): + super(BertPretrainEva, self).__init__() + self.bert = GetLogProbs(config) + self.argmax = P.Argmax(axis=-1, output_type=mstype.int32) + self.equal = P.Equal() + self.mean = P.ReduceMean() + self.sum = P.ReduceSum() + self.total = Parameter(Tensor([0], mstype.float32), name='total') + self.acc = Parameter(Tensor([0], mstype.float32), name='acc') + self.reshape = P.Reshape() + self.shape = P.Shape() + self.cast = P.Cast() + + + def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, nsp_label, masked_weights): + bs, _ = self.shape(input_ids) + probs = self.bert(input_ids, input_mask, token_type_id, masked_pos) + index = self.argmax(probs) + index = self.reshape(index, (bs, -1)) + eval_acc = self.equal(index, masked_ids) + eval_acc1 = self.cast(eval_acc, mstype.float32) + acc = self.mean(eval_acc1) + P.Print()(acc) + self.total += self.shape(probs)[0] + self.acc += self.sum(eval_acc1) + return acc, self.total, self.acc + + +def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''): + ''' + Get enwiki seq_length=512 dataset + ''' + ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids", + "masked_lm_positions", "masked_lm_ids", + "next_sentence_labels", + "masked_lm_weights"]) + type_cast_op = C.TypeCast(mstype.int32) + ds = ds.map(input_columns="segment_ids", operations=type_cast_op) + ds = ds.map(input_columns="input_mask", operations=type_cast_op) + ds = ds.map(input_columns="input_ids", operations=type_cast_op) + ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) + ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) + ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) + ds = ds.repeat(repeat_count) + + # apply batch operations + ds = ds.batch(batch_size, drop_remainder=True) + return ds + + +def bert_predict(): + ''' + Predict function + ''' + devid = int(os.getenv('DEVICE_ID')) + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid) + dataset = get_enwiki_512_dataset(bert_net_cfg.batch_size, 1) + net_for_pretraining = BertPretrainEva(bert_net_cfg) + net_for_pretraining.set_train(False) + param_dict = load_checkpoint(cfg.finetune_ckpt) + load_param_into_net(net_for_pretraining, param_dict) + model = Model(net_for_pretraining) + return model, dataset, net_for_pretraining + + +def MLM_eval(): + ''' + Evaluate function + ''' + _, dataset, net_for_pretraining = bert_predict() + net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2], metrics={myMetric()}) + res = net.eval(dataset, dataset_sink_mode=False) + print("==============================================================") + for _, v in res.items(): + print("Accuracy is: ") + print(v) + print("==============================================================") + + +if __name__ == "__main__": + MLM_eval()