提交 c01f0b66 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!4623 opencl convolution kernel support winograd

Merge pull request !4623 from 王东旭/opencl_winograd
......@@ -29,36 +29,275 @@ using mindspore::schema::PrimitiveType_Conv2D;
namespace mindspore::kernel {
int ConvolutionOpenCLKernel::Init() {
static int count = 0;
std::set<std::string> build_options;
std::string source = CodeGen();
std::string program_name = "convolution" + std::to_string(count);
count++;
std::string kernel_name = "convolution";
static int init_count = 0;
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
auto allocator = ocl_runtime->GetAllocator();
auto param = reinterpret_cast<ConvParameter *>(op_parameter_);
std::set<std::string> build_options;
init_count++;
CI_SLICES = UP_DIV(param->input_channel_, C4NUM);
CO_SLICES = UP_DIV(param->output_channel_, C4NUM);
// note: TILES_X TILES_Y TILES_XY is only used when use_winograd_=true
TILES_X = UP_DIV(param->output_w_, 4);
TILES_Y = UP_DIV(param->output_h_, 4);
TILES_XY = TILES_X * TILES_Y;
use_winograd_ = UseWinograd4x4To6x6();
// build kernel
if (use_winograd_) {
MS_LOG(DEBUG) << "use winograd";
std::string program_name;
program_name = "Winograd4x4To36" + std::to_string(init_count);
ocl_runtime->LoadSource(program_name, CodeGenWinograd4x4To36());
ocl_runtime->BuildKernel(kernel_4x4to36, program_name, "Winograd4x4To36", build_options);
program_name = "WinogradConvolution" + std::to_string(init_count);
ocl_runtime->LoadSource(program_name, CodeGenWinogradConvolution());
ocl_runtime->BuildKernel(kernel_conv, program_name, "WinogradConvolution", build_options);
program_name = "Winograd36To4x4" + std::to_string(init_count);
ocl_runtime->LoadSource(program_name, CodeGenWinograd36To4x4());
ocl_runtime->BuildKernel(kernel_36to4x4, program_name, "Winograd36To4x4", build_options);
} else {
std::string program_name = "convolution" + std::to_string(init_count);
ocl_runtime->LoadSource(program_name, CodeGenConvolution());
ocl_runtime->BuildKernel(kernel_conv, program_name, "Convolution", build_options);
}
// allocate winograd memory
if (use_winograd_) {
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
size_t sizeof_datatype = 2;
#else
size_t img_dtype = CL_FLOAT;
size_t sizeof_datatype = 4;
#endif
size_t size = TILES_XY * CI_SLICES * 36 * sizeof_datatype;
size_t width = TILES_XY;
size_t height = CI_SLICES * 36;
winograd_mem0_ = allocator->Malloc(size, {width, height, img_dtype});
size = TILES_XY * CO_SLICES * 36 * sizeof_datatype;
width = TILES_XY;
height = CO_SLICES * 36;
winograd_mem1_ = allocator->Malloc(size, {width, height, img_dtype});
}
ocl_runtime->LoadSource(program_name, source);
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
this->InitBuffer();
ori_format_ = out_tensors_[0]->GetFormat();
out_tensors_[0]->SetFormat(schema::Format_NHWC4);
MS_LOG(DEBUG) << kernel_name << " Init Done!";
return RET_OK;
}
std::string ConvolutionOpenCLKernel::CodeGen() {
int ConvolutionOpenCLKernel::InitBuffer() {
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
auto allocator = ocl_runtime->GetAllocator();
auto weight_tensor = in_tensors_[1];
auto weight_shape = weight_tensor->shape();
size_t CO = weight_shape[0];
size_t KH = weight_shape[1];
size_t KW = weight_shape[2];
size_t CI = weight_shape[3];
// size_t CI_SLICES = UP_DIV(CI, C4NUM);
// size_t CO_SLICES = UP_DIV(CO, C4NUM);
constexpr size_t CI_TILE = C4NUM;
constexpr size_t CO_TILE = C4NUM;
size_t packed_weight_size;
if (use_winograd_) {
packed_weight_size = UP_DIV(CO, 8) * 6 * 6 * CI_SLICES * 2 * CI_TILE * CO_TILE * sizeof(float);
} else {
packed_weight_size = CO_SLICES * KH * KW * CI_SLICES * CI_TILE * CO_TILE * sizeof(float);
}
packed_weight_ = reinterpret_cast<float *>(allocator->Malloc(packed_weight_size));
allocator->MapBuffer(packed_weight_, CL_MAP_WRITE, nullptr, true);
memset(packed_weight_, 0x00, packed_weight_size);
auto origin_weight = reinterpret_cast<float *>(weight_tensor->Data());
if (use_winograd_) {
// weight: OHWI -> O66I -> O/8 6 6 I/4 O2 I4 O4
std::vector<float> encoded_weight(CO * 6 * 6 * CI);
std::vector<float> Gt = {1.0000000000, 1.0000000000, 1.0000000000, 1.0000000000, 1.0000000000, 0.0000000000,
0.0000000000, 0.7071067691, -0.7071067691, 1.4142135382, -1.4142135382, 0.0000000000,
0.0000000000, 0.4999999702, 0.4999999702, 1.9999998808, 1.9999998808, 1.0000000000};
std::vector<float> G(Gt.size());
for (int y = 0; y < 3; ++y) {
for (int x = 0; x < 6; ++x) {
G[x * 3 + y] = Gt[y * 6 + x];
}
}
for (int co = 0; co < CO; ++co) {
for (int ci = 0; ci < CI; ++ci) {
std::vector<float> in_vals(9);
for (int kh = 0; kh < 3; ++kh) {
for (int kw = 0; kw < 3; ++kw) {
const int f_index = ((co * 3 + kh) * 3 + kw) * CI + ci;
in_vals[kh * 3 + kw] = origin_weight[f_index];
}
}
auto temp_vals = MatrixMultiply(G, in_vals, 6, 3, 3);
auto out_vals = MatrixMultiply(temp_vals, Gt, 6, 3, 6);
for (int kh = 0; kh < 6; ++kh) {
for (int kw = 0; kw < 6; ++kw) {
const int f_index = ((co * 6 + kh) * 6 + kw) * CI + ci;
encoded_weight[f_index] = out_vals[kh * 6 + kw];
}
}
}
}
for (int co = 0, src_idx = 0; co < CO; ++co) {
for (int kh = 0; kh < 6; ++kh) {
for (int kw = 0; kw < 6; ++kw) {
for (int ci = 0; ci < CI; ++ci) {
int co_outer = co / 8;
int co_inner_group = co % 8 / 4;
int co_inner = co % 8 % 4;
int ci_outer = ci / 4;
int ci_inner = ci % 4;
size_t dst_idx =
(((((co_outer * 6 + kh) * 6 + kw) * CI_SLICES + ci_outer) * 2 + co_inner_group) * CI_TILE + ci_inner) *
CO_TILE +
co_inner;
packed_weight_[dst_idx] = encoded_weight[src_idx++];
}
}
}
}
} else {
// weight: OHWI -> O/4 H W I/4 I4 O4
for (int co = 0; co < CO; ++co) {
for (int kh = 0; kh < KH; ++kh) {
for (int kw = 0; kw < KW; ++kw) {
for (int ci = 0; ci < CI; ++ci) {
auto co_outer = co / CO_TILE;
auto co_inner = co % CO_TILE;
auto ci_outer = ci / CI_TILE;
auto ci_inner = ci % CI_TILE;
packed_weight_[((((co_outer * KH + kh) * KW + kw) * CI_SLICES + ci_outer) * CI_TILE + ci_inner) * CO_TILE +
co_inner] = *(origin_weight++);
}
}
}
}
}
allocator->UnmapBuffer(packed_weight_);
// align bias from C to C4
auto bias_tensor = in_tensors_[2];
size_t packed_bias_size = CO_SLICES * CO_TILE * sizeof(float);
packed_bias_ = reinterpret_cast<float *>(allocator->Malloc(packed_bias_size));
packed_bias_ = reinterpret_cast<float *>(allocator->MapBuffer(packed_bias_, CL_MAP_WRITE, nullptr, true));
memset(packed_bias_, 0x00, packed_bias_size);
auto bias_data = reinterpret_cast<float *>(bias_tensor->Data());
for (int co = 0; co < CO; ++co) {
packed_bias_[co] = bias_data[co];
}
allocator->UnmapBuffer(packed_bias_);
return RET_OK;
}
int ConvolutionOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
// size_t CO_SLICES = UP_DIV(out_tensors_[0]->Channel(), C4NUM);
size_t im_dst_x, im_dst_y;
if (in_tensors_[0]->GetFormat() == schema::Format_NHWC4) {
if (out_tensors_[0]->Width() * CO_SLICES < 65536) {
{
im_dst_x = out_tensors_[0]->Width() * CO_SLICES;
im_dst_y = out_tensors_[0]->Height();
}
} else {
im_dst_x = out_tensors_[0]->Height() * CO_SLICES;
im_dst_y = out_tensors_[0]->Width();
}
} else {
im_dst_y = out_tensors_[0]->Height() * CO_SLICES;
im_dst_x = out_tensors_[0]->Width();
}
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
#else
size_t img_dtype = CL_FLOAT;
#endif
img_size->clear();
img_size->push_back(im_dst_x);
img_size->push_back(im_dst_y);
img_size->push_back(img_dtype);
return RET_OK;
}
int ConvolutionOpenCLKernel::Run() {
MS_LOG(DEBUG) << this->name() << " Running!";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
auto param = reinterpret_cast<ConvParameter *>(op_parameter_);
int arg_cn = 0;
if (use_winograd_) {
arg_cn = 0;
cl_int4 _4x4to36_in_shape = {1, param->input_h_, param->input_w_, CI_SLICES};
cl_int4 _4x4to36_out_shape = {1, 36, TILES_XY, CI_SLICES};
ocl_runtime->SetKernelArg(kernel_4x4to36, arg_cn++, in_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_4x4to36, arg_cn++, winograd_mem0_);
ocl_runtime->SetKernelArg(kernel_4x4to36, arg_cn++, _4x4to36_in_shape);
ocl_runtime->SetKernelArg(kernel_4x4to36, arg_cn++, _4x4to36_out_shape);
arg_cn = 0;
cl_int4 conv_in_shape = {1, 36, TILES_XY, CI_SLICES};
cl_int4 conv_out_shape = {1, 36, TILES_XY, CO_SLICES};
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, winograd_mem0_);
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, winograd_mem1_);
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, packed_weight_);
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, conv_in_shape);
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, conv_out_shape);
arg_cn = 0;
cl_int4 _36to4x4_in_shape = {1, 16, TILES_XY, CO_SLICES};
cl_int4 _36to4x4_out_shape = {1, param->output_h_, param->output_w_, CO_SLICES};
ocl_runtime->SetKernelArg(kernel_36to4x4, arg_cn++, winograd_mem1_);
ocl_runtime->SetKernelArg(kernel_36to4x4, arg_cn++, out_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_36to4x4, arg_cn++, packed_bias_);
ocl_runtime->SetKernelArg(kernel_36to4x4, arg_cn++, _36to4x4_in_shape);
ocl_runtime->SetKernelArg(kernel_36to4x4, arg_cn++, _36to4x4_out_shape);
} else {
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, in_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, out_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, packed_weight_);
ocl_runtime->SetKernelArg(kernel_conv, arg_cn++, packed_bias_);
}
if (use_winograd_) {
ocl_runtime->RunKernel(kernel_4x4to36, {size_t(TILES_XY), 6, size_t(CI_SLICES)}, {16, 6, 4}, nullptr);
ocl_runtime->RunKernel(kernel_conv, {size_t(TILES_XY / 2), 36, size_t(CO_SLICES / 2)}, {8, 6, 2}, nullptr);
ocl_runtime->RunKernel(kernel_36to4x4, {size_t(TILES_XY), 4, size_t(CO_SLICES)}, {32, 4, 2}, nullptr);
} else {
std::vector<size_t> global, local;
SetGlobalLocalConv(&global, &local);
ocl_runtime->RunKernel(kernel_conv, global, local, nullptr);
}
return RET_OK;
}
std::string ConvolutionOpenCLKernel::CodeGenConvolution() {
auto param = reinterpret_cast<ConvParameter *>(op_parameter_);
auto input_tensor = in_tensors_[0];
auto output_tensor = out_tensors_[0];
const size_t CI = input_tensor->Channel();
const size_t CI_SLICES = UP_DIV(CI, C4NUM);
const size_t CI_ALIGN = UP_DIV(CI, C4NUM) * C4NUM;
// const size_t CI_SLICES = UP_DIV(CI, C4NUM);
const size_t CI_ALIGN = CI_SLICES * C4NUM;
const size_t IH = input_tensor->Height();
const size_t IW = input_tensor->Width();
const size_t CO = output_tensor->Channel();
const size_t CO_SLICES = UP_DIV(CO, C4NUM);
const size_t CO_ALIGN = UP_DIV(CO, C4NUM) * C4NUM;
// const size_t CO_SLICES = UP_DIV(CO, C4NUM);
const size_t CO_ALIGN = CO_SLICES * C4NUM;
const size_t OH = output_tensor->Height();
const size_t OW = output_tensor->Width();
const size_t KH = param->kernel_h_;
......@@ -106,10 +345,10 @@ std::string ConvolutionOpenCLKernel::CodeGen() {
code += "__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;\n\n";
code +=
"__kernel void convolution(__read_only image2d_t input,\n"
" __global FLT4 *weight,\n"
" __global FLT4 *bias,\n"
" __write_only image2d_t output)\n"
"__kernel void Convolution(__read_only image2d_t input,\n"
" __write_only image2d_t output,\n"
" __global FLT4 *weight,\n"
" __global FLT4 *bias)"
"{\n";
code +=
......@@ -173,67 +412,218 @@ std::string ConvolutionOpenCLKernel::CodeGen() {
return code;
}
int ConvolutionOpenCLKernel::InitBuffer() {
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
auto allocator = ocl_runtime->GetAllocator();
// weight: OHWI -> OHWIIO
auto weight_tensor = in_tensors_[1];
auto weight_shape = weight_tensor->shape();
size_t CO = weight_shape[0];
size_t KH = weight_shape[1];
size_t KW = weight_shape[2];
size_t CI = weight_shape[3];
size_t CI_SLICES = UP_DIV(CI, C4NUM);
size_t CO_SLICES = UP_DIV(CO, C4NUM);
constexpr size_t CI_TILE = C4NUM;
constexpr size_t CO_TILE = C4NUM;
size_t packed_weight_size = CO_SLICES * KH * KW * CI_SLICES * CI_TILE * CO_TILE * sizeof(float);
packed_weight_ = reinterpret_cast<float *>(allocator->Malloc(packed_weight_size));
packed_weight_ = reinterpret_cast<float *>(allocator->MapBuffer(packed_weight_, CL_MAP_WRITE, nullptr, true));
memset(packed_weight_, 0x00, packed_weight_size);
auto weight_data = reinterpret_cast<float *>(weight_tensor->Data());
for (int co = 0; co < CO; ++co) {
for (int kh = 0; kh < KH; ++kh) {
for (int kw = 0; kw < KW; ++kw) {
for (int ci = 0; ci < CI; ++ci) {
auto co_outer = co / CO_TILE;
auto co_inner = co % CO_TILE;
auto ci_outer = ci / CI_TILE;
auto ci_inner = ci % CI_TILE;
packed_weight_[((((co_outer * KH + kh) * KW + kw) * CI_SLICES + ci_outer) * CI_TILE + ci_inner) * CO_TILE +
co_inner] = *(weight_data++);
}
}
}
}
allocator->UnmapBuffer(packed_weight_);
// align bias
auto bias_tensor = in_tensors_[2];
size_t packed_bias_size = CO_SLICES * CO_TILE * sizeof(float);
packed_bias_ = reinterpret_cast<float *>(allocator->Malloc(packed_bias_size));
packed_bias_ = reinterpret_cast<float *>(allocator->MapBuffer(packed_bias_, CL_MAP_WRITE, nullptr, true));
memset(packed_bias_, 0x00, packed_bias_size);
auto bias_data = reinterpret_cast<float *>(bias_tensor->Data());
for (int co = 0; co < CO; ++co) {
packed_bias_[co] = bias_data[co];
}
allocator->UnmapBuffer(packed_bias_);
std::string ConvolutionOpenCLKernel::CodeGenWinograd4x4To36() {
return "#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))\n"
"#define PAD 1\n"
"\n"
"__constant sampler_t\n"
"smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"
"\n"
"constant float Bt[36] = {\n"
" 1.0000000000f, 0.0000000000f, -2.5000004768f, -0.0000001192f, 1.0000001192f, 0.0000000000f,\n"
" 0.0000000000f, 0.9428091049f, 1.3333333731f, -0.4714044929f, -0.6666667461f, 0.0000000000f,\n"
" 0.0000000000f, -0.9428089857f, 1.3333334923f, 0.4714045525f, -0.6666667461f, 0.0000000000f,\n"
" 0.0000000000f, -0.1178511307f, -0.0833333358f, 0.2357022613f, 0.1666666865f, 0.0000000000f,\n"
" 0.0000000000f, 0.1178511307f, -0.0833333507f, -0.2357022911f, 0.1666666865f, 0.0000000000f,\n"
" 0.0000000000f, 0.9999998808f, -0.0000000596f, -2.5000000000f, 0.0000000000f, 1.0000000000f,\n"
"};\n"
"\n"
"__kernel void Winograd4x4To36(__read_only image2d_t input,\n"
" __write_only image2d_t output,\n"
" int4 input_shape, // N H W CI_SLICES\n"
" int4 output_shape) // N 36 H/4*W/4 CI_SLICES\n"
"{\n"
" int tile_xy = get_global_id(0);\n"
" int row = get_global_id(1);\n"
" int slice = get_global_id(2);\n"
"\n"
" int TILE_XY = output_shape.z;\n"
" int SLICES = input_shape.w;\n"
" if (tile_xy >= TILE_XY || row >= 6 || slice >= SLICES)\n"
" {\n"
" return;\n"
" }\n"
"\n"
" int IH = input_shape.y, IW = input_shape.z;\n"
" int TILE_X = IW / 4;\n"
" int tile_x = tile_xy % TILE_X;\n"
" int tile_y = tile_xy / TILE_X;\n"
"\n"
" constant float *Bt_row = Bt + row * 6;\n"
" float4 BtD_row[6] = {0};\n"
" for (int y = 0; y < 6; y++)\n"
" {\n"
" int y_idx = tile_y * 4 - PAD + y;\n"
" for (int x = 0; x < 6; x++)\n"
" {\n"
" int x_idx = (tile_x * 4 - PAD + x) * SLICES + slice;\n"
" BtD_row[x] += Bt_row[y] * read_imagef(input, smp_none, (int2)(x_idx, y_idx));\n"
" }\n"
" }\n"
"\n"
" for (int y = 0; y < 6; y++)\n"
" {\n"
" float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);\n"
" for (int x = 0; x < 6; x++)\n"
" {\n"
" acc += BtD_row[x] * Bt[y * 6 + x];\n"
" }\n"
"// write_imagef(output, (int2)((row * 6 + y) * SLICES + slice, tile_xy), acc); // H WC W=36\n"
" write_imagef(output, (int2)(tile_xy, slice * 36 + (row * 6 + y)), acc); // CH W H=36\n"
" }\n"
"}";
}
return RET_OK;
} // namespace mindspore::kernel
std::string ConvolutionOpenCLKernel::CodeGenWinogradConvolution() {
return "#define CI_TILE 4\n"
"//#define CI 96\n"
"#define IH 36\n"
"//#define IW 256\n"
"//#define CO 80\n"
"#define OH 36\n"
"//#define OW 256\n"
"//#define CI_SLICES 24\n"
"//#define CO_SLICES 20\n"
"\n"
"#define FLT4 float4\n"
"#define READ_FLT4 read_imagef\n"
"#define WRITE_FLT4 write_imagef\n"
"\n"
"//#define __global\n"
"\n"
"__constant sampler_t\n"
"smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"
"\n"
"__kernel void WinogradConvolution(__read_only image2d_t input,\n"
" __write_only image2d_t output,\n"
" __global float16 *weight,\n"
" int4 input_shape, // N 36 H/4*W/4 CI_SLICES\n"
" int4 output_shape) // N 36 H/4*W/4 CO_SLICES\n"
"{\n"
" int ow = get_global_id(0) * 2;\n"
" int oh = get_global_id(1);\n"
" int co_slice = get_global_id(2) * 2;\n"
"\n"
" int CI_SLICES = input_shape.w;\n"
" int IW = input_shape.z;\n"
" int CO_SLICES = output_shape.w;\n"
" int OW = IW;\n"
"\n"
" if (oh >= OH || ow >= OW || co_slice >= CO_SLICES)\n"
" {\n"
" return;\n"
" }\n"
"\n"
" __global float16 *w_ptr = weight + (co_slice / 2 * 36 + oh) * CI_SLICES * 2;\n"
" int y_idx = oh;\n"
" FLT4 out00 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);\n"
" FLT4 out01 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);\n"
" FLT4 out10 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);\n"
" FLT4 out11 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);\n"
" for (int ci_slice = 0; ci_slice < CI_SLICES; ci_slice++)\n"
" {\n"
" FLT4 in0 = READ_FLT4(input, smp_none, (int2)(ow + 0, y_idx));\n"
" FLT4 in1 = READ_FLT4(input, smp_none, (int2)(ow + 1, y_idx));\n"
" y_idx += 36;\n"
"\n"
" float16 w0 = w_ptr[0], w1 = w_ptr[1];\n"
" w_ptr += 2;\n"
"\n"
" out00 += in0.x * w0.s0123;\n"
" out00 += in0.y * w0.s4567;\n"
" out00 += in0.z * w0.s89ab;\n"
" out00 += in0.w * w0.scdef;\n"
"\n"
" out01 += in1.x * w0.s0123;\n"
" out01 += in1.y * w0.s4567;\n"
" out01 += in1.z * w0.s89ab;\n"
" out01 += in1.w * w0.scdef;\n"
"\n"
" out10 += in0.x * w1.s0123;\n"
" out10 += in0.y * w1.s4567;\n"
" out10 += in0.z * w1.s89ab;\n"
" out10 += in0.w * w1.scdef;\n"
"\n"
" out11 += in1.x * w1.s0123;\n"
" out11 += in1.y * w1.s4567;\n"
" out11 += in1.z * w1.s89ab;\n"
" out11 += in1.w * w1.scdef;\n"
" }\n"
" WRITE_FLT4(output, (int2)(ow + 0, (co_slice + 0) * 36 + oh), out00);\n"
" WRITE_FLT4(output, (int2)(ow + 1, (co_slice + 0) * 36 + oh), out01);\n"
" WRITE_FLT4(output, (int2)(ow + 0, (co_slice + 1) * 36 + oh), out10);\n"
" WRITE_FLT4(output, (int2)(ow + 1, (co_slice + 1) * 36 + oh), out11);\n"
"}";
}
static int GetBiggestDivider(int x, int y) {
for (int i = y; i != 0; i--) {
if (x % i == 0) {
return i;
}
}
return 1;
std::string ConvolutionOpenCLKernel::CodeGenWinograd36To4x4() {
return "//#define TILE_XY 256\n"
"//#define SLICES 20\n"
"//#define OH 16\n"
"//#define OW 256\n"
"\n"
"//#define __global\n"
"__constant sampler_t\n"
"smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"
"\n"
"constant float At[24] = {\n"
" 1.0000000000f, 1.0000000000f, 1.0000000000f, 1.0000000000f, 1.0000000000f, 0.0000000000f,\n"
" 0.0000000000f, 0.7071067691f, -0.7071067691f, 1.4142135382f, -1.4142135382f, 0.0000000000f,\n"
" 0.0000000000f, 0.4999999702f, 0.4999999702f, 1.9999998808f, 1.9999998808f, 0.0000000000f,\n"
" 0.0000000000f, 0.3535533845f, -0.3535533845f, 2.8284270763f, -2.8284270763f, 1.0000000000f\n"
"};\n"
"\n"
"__kernel void Winograd36To4x4(__read_only image2d_t input,\n"
" __write_only image2d_t output,\n"
" __global float4 *bias,\n"
" int4 input_shape, // N 36 H/4*W/4 CO_SLICES\n"
" int4 output_shape) // N H W CO_SLICES\n"
"{\n"
" int tile_xy = get_global_id(0);\n"
" int row = get_global_id(1);\n"
" int slice = get_global_id(2);\n"
"\n"
" int TILE_XY = input_shape.z;\n"
" int SLICES = input_shape.w;\n"
" int OH = output_shape.y;\n"
" int OW = output_shape.z;\n"
"\n"
" if (tile_xy >= TILE_XY || row >= 4 || slice >= SLICES)\n"
" {\n"
" return;\n"
" }\n"
"\n"
" constant float *At_row = At + row * 6;\n"
" float4 AtM_row[6] = {0};\n"
" for (int y = 0; y < 6; y++)\n"
" {\n"
" for (int x = 0; x < 6; x++)\n"
" {\n"
" AtM_row[x] += At_row[y] * read_imagef(input, smp_none, (int2)(tile_xy, slice * 36 + y * 6 + "
"x));\n"
" }\n"
" }\n"
"\n"
" for (int x = 0; x < 4; x++)\n"
" {\n"
" float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);\n"
" for (int y = 0; y < 6; y++)\n"
" {\n"
" acc += AtM_row[y] * At[x * 6 + y];\n"
" }\n"
" acc += bias[slice];\n"
"\n"
" int TILE_X = OW / 4;\n"
" int tile_x = tile_xy % TILE_X * 4;\n"
" int tile_y = tile_xy / TILE_X * 4;\n"
"// write_imagef(output, (int2)(tile_x + x, slice * OH + tile_y + row), acc); // height=CH width=W\n"
" write_imagef(output, (int2)((tile_x + x) * SLICES + slice, tile_y + row), acc); // height=H "
"width=WC\n"
" }\n"
"}";
}
int ConvolutionOpenCLKernel::GetGlobalLocal(std::vector<size_t> *global, std::vector<size_t> *local) {
int ConvolutionOpenCLKernel::SetGlobalLocalConv(std::vector<size_t> *global, std::vector<size_t> *local) {
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
auto param = reinterpret_cast<ConvParameter *>(op_parameter_);
param->output_h_ = out_tensors_[0]->Height();
......@@ -242,12 +632,12 @@ int ConvolutionOpenCLKernel::GetGlobalLocal(std::vector<size_t> *global, std::ve
constexpr size_t work_group_size[] = {4, 4, 1};
auto max_work_item_sizes = ocl_runtime->GetWorkItemSize();
size_t max_work_group_size = ocl_runtime->GetKernelMaxWorkGroupSize(kernel_(), (*ocl_runtime->Device())());
size_t max_work_group_size = ocl_runtime->GetKernelMaxWorkGroupSize(kernel_conv(), (*ocl_runtime->Device())());
const size_t max_z_size = std::min<size_t>(16, max_work_item_sizes[2]);
size_t global_h = UP_DIV(param->output_h_, work_group_size[0]) * work_group_size[0];
size_t global_w = UP_DIV(param->output_w_, work_group_size[1]) * work_group_size[1];
size_t global_c = UP_DIV(UP_DIV(param->output_channel_, C4NUM), work_group_size[2]) * work_group_size[2];
size_t global_c = UP_DIV(CO_SLICES, work_group_size[2]) * work_group_size[2];
size_t local_c = GetBiggestDivider(global_c, max_z_size);
if (local_c == 0) {
......@@ -262,8 +652,6 @@ int ConvolutionOpenCLKernel::GetGlobalLocal(std::vector<size_t> *global, std::ve
}
auto output_tensor = out_tensors_[0];
const size_t CO = output_tensor->Channel();
const size_t CO_SLICES = UP_DIV(CO, C4NUM);
const size_t OW = output_tensor->Width();
if (OW * CO_SLICES > 65536) {
local_w = 4;
......@@ -272,7 +660,7 @@ int ConvolutionOpenCLKernel::GetGlobalLocal(std::vector<size_t> *global, std::ve
global->clear();
global->push_back(UP_DIV(param->output_h_, local_h) * local_h);
global->push_back(UP_DIV(param->output_w_, local_w) * local_w);
global->push_back(UP_DIV(UP_DIV(param->output_channel_, C4NUM), local_c) * local_c);
global->push_back(UP_DIV(CO_SLICES, local_c) * local_c);
local->clear();
local->push_back(local_h);
local->push_back(local_w);
......@@ -280,52 +668,6 @@ int ConvolutionOpenCLKernel::GetGlobalLocal(std::vector<size_t> *global, std::ve
return RET_OK;
}
int ConvolutionOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
size_t CO_SLICES = UP_DIV(out_tensors_[0]->Channel(), C4NUM);
size_t im_dst_x, im_dst_y;
if (in_tensors_[0]->GetFormat() == schema::Format_NHWC4) {
if (out_tensors_[0]->Width() * CO_SLICES < 65536) {
{
im_dst_x = out_tensors_[0]->Width() * CO_SLICES;
im_dst_y = out_tensors_[0]->Height();
}
} else {
im_dst_x = out_tensors_[0]->Height() * CO_SLICES;
im_dst_y = out_tensors_[0]->Width();
}
} else {
im_dst_y = out_tensors_[0]->Height() * CO_SLICES;
im_dst_x = out_tensors_[0]->Width();
}
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
#else
size_t img_dtype = CL_FLOAT;
#endif
img_size->clear();
img_size->push_back(im_dst_x);
img_size->push_back(im_dst_y);
img_size->push_back(img_dtype);
return RET_OK;
}
int ConvolutionOpenCLKernel::Run() {
MS_LOG(DEBUG) << this->name() << " Running!";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
int arg_cn = 0;
ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_, arg_cn++, packed_weight_);
ocl_runtime->SetKernelArg(kernel_, arg_cn++, packed_bias_);
ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->Data());
std::vector<size_t> global;
std::vector<size_t> local;
GetGlobalLocal(&global, &local);
ocl_runtime->RunKernel(kernel_, global, local, nullptr);
return RET_OK;
}
kernel::LiteKernel *OpenCLConvolutionKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
......
......@@ -40,12 +40,59 @@ class ConvolutionOpenCLKernel : public OpenCLKernel {
int GetImageSize(size_t idx, std::vector<size_t> *img_size) override;
private:
int CI_SLICES;
int CO_SLICES;
float *packed_weight_ = nullptr;
float *packed_bias_ = nullptr;
cl::Kernel kernel_;
std::string CodeGen();
int GetGlobalLocal(std::vector<size_t> *global, std::vector<size_t> *local);
bool use_winograd_ = false;
int TILES_X;
int TILES_Y;
int TILES_XY;
void *winograd_mem0_ = nullptr;
void *winograd_mem1_ = nullptr;
cl::Kernel kernel_4x4to36;
cl::Kernel kernel_conv;
cl::Kernel kernel_36to4x4;
std::string CodeGenConvolution();
std::string CodeGenWinograd4x4To36();
std::string CodeGenWinogradConvolution();
std::string CodeGenWinograd36To4x4();
int SetGlobalLocalConv(std::vector<size_t> *global, std::vector<size_t> *local);
bool UseWinograd4x4To6x6() {
auto param = reinterpret_cast<ConvParameter *>(op_parameter_);
const bool attr_valid = param->kernel_h_ == 3 && param->kernel_w_ == 3 && param->dilation_h_ == 1 &&
param->dilation_w_ == 1 && param->stride_h_ == 1 && param->stride_w_ == 1;
const bool channel_good = CO_SLICES % 4 == 0 && CI_SLICES >= 16 && CO_SLICES >= 16;
const bool hw_good = TILES_X * TILES_Y >= 32;
return attr_valid && channel_good && hw_good;
}
std::vector<float> MatrixMultiply(const std::vector<float> &A, const std::vector<float> &B, int M, int N, int K) {
std::vector<float> C(M * K);
for (int i = 0; i < M; ++i) {
for (int j = 0; j < K; ++j) {
float s = 0.0f;
for (int k = 0; k < N; ++k) {
s += A[i * N + k] * B[k * K + j];
}
C[i * K + j] = s;
}
}
return C;
}
static int GetBiggestDivider(int x, int y) {
for (int i = y; i != 0; i--) {
if (x % i == 0) {
return i;
}
}
return 1;
}
};
} // namespace mindspore::kernel
......
......@@ -113,6 +113,7 @@ void *OpenCLAllocator::Malloc(size_t size, const std::vector<size_t> &img_size)
UnLock();
return nullptr;
}
MS_LOG(DEBUG) << "Malloc a new Image2D, width=" << img_size[0] << ", height=" << img_size[1];
image_ptr = static_cast<void *>(image);
}
}
......
......@@ -71,6 +71,10 @@ void OpenCLRuntime::DeleteInstance() {
OpenCLRuntime::OpenCLRuntime() { default_build_opts_ = " -cl-mad-enable -cl-fast-relaxed-math -Werror"; }
void printf_callback(const char *buffer, size_t length, size_t final, void *user_data) {
fwrite(buffer, 1, length, stdout);
}
// Init will get platforms info, get devices info, create opencl context.
int OpenCLRuntime::Init() {
std::unique_lock<std::mutex> lck(g_init_mtx);
......@@ -147,6 +151,9 @@ int OpenCLRuntime::Init() {
}
#else
MS_LOG(INFO) << "Create common opencl context";
// cl_context_properties context_prop[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)platforms[0](),
// CL_PRINTF_CALLBACK_ARM, (cl_context_properties)printf_callback, 0};
// context_ = std::make_shared<cl::Context>(std::vector<cl::Device>{*device_}, context_prop, nullptr, nullptr, &err);
context_ = std::make_shared<cl::Context>(std::vector<cl::Device>{*device_}, nullptr, nullptr, nullptr, &err);
#endif
if (err != CL_SUCCESS) {
......
......@@ -63,9 +63,26 @@ void MyCompareOutput(lite::tensor::Tensor *output_tensor, const std::string &fil
printf("compare success!\n\n\n");
}
void TEST_MAIN(ConvParameter *param, schema::Format data_format, const std::string &input_file,
const std::string &weight_file, const std::string &bias_file, const std::string &expect_file) {
void TEST_MAIN(schema::Format input_format, schema::Format output_format, const std::string &data_path,
std::string attr_str) {
assert(data_format == schema::Format_NHWC || data_format == schema::Format_NHWC4);
auto param = new ConvParameter;
sscanf(attr_str.c_str(),
"inputNHWC_%dx%dx%dx%d_outputNHWC_%dx%dx%dx%d_kernelHW_%dx%d_strideHW_%dx%d_padTopBottomLeftRight_%dx%dx%dx%d_"
"dilationHW_%dx%d",
&param->input_batch_, &param->input_h_, &param->input_w_, &param->input_channel_, &param->output_batch_,
&param->output_h_, &param->output_w_, &param->output_channel_, &param->kernel_h_, &param->kernel_w_,
&param->stride_h_, &param->stride_w_, &param->pad_u_, &param->pad_d_, &param->pad_l_, &param->pad_r_,
&param->dilation_h_, &param->dilation_w_);
auto testcase_path = data_path + "/" + attr_str + "/";
auto input_file = testcase_path + (input_format == schema::Format_NHWC4 ? "input_NHWC4.bin" : "input_NHWC.bin");
auto weight_file = testcase_path + "weight_OHWI.bin";
auto bias_file = testcase_path + "bias_C4.bin";
auto expect_file = testcase_path + (output_format == schema::Format_NHWC4 ? "expect_NHWC4.bin" : "expect_NHWC.bin");
std::cout << input_file << std::endl;
std::cout << weight_file << std::endl;
std::cout << bias_file << std::endl;
std::cout << expect_file << std::endl;
std::cout << "initialize OpenCLRuntime";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
......@@ -79,10 +96,10 @@ void TEST_MAIN(ConvParameter *param, schema::Format data_format, const std::stri
std::vector<int> output_shape = {param->output_batch_, param->output_h_, param->output_w_, param->output_channel_};
auto data_type = kNumberTypeFloat32;
auto tensorType = schema::NodeType_ValueNode;
auto input_tensor = new lite::tensor::Tensor(data_type, input_shape, data_format, tensorType);
auto input_tensor = new lite::tensor::Tensor(data_type, input_shape, input_format, tensorType);
auto weight_tensor = new lite::tensor::Tensor(data_type, weight_shape, schema::Format_KHWC, tensorType);
auto bias_tensor = new lite::tensor::Tensor(data_type, bias_shape, schema::Format_KHWC, tensorType);
auto output_tensor = new lite::tensor::Tensor(data_type, output_shape, data_format, tensorType);
auto output_tensor = new lite::tensor::Tensor(data_type, output_shape, output_format, tensorType);
std::vector<lite::tensor::Tensor *> inputs{input_tensor, weight_tensor, bias_tensor};
std::vector<lite::tensor::Tensor *> outputs{output_tensor};
......@@ -114,7 +131,6 @@ void TEST_MAIN(ConvParameter *param, schema::Format data_format, const std::stri
std::cout << "sub_graph->Run()";
sub_graph->Run();
printf("output_tensor->Size() =%zu\n", output_tensor->Size());
std::cout << "compare result";
MyCompareOutput(output_tensor, expect_file);
......@@ -131,57 +147,35 @@ void TEST_MAIN(ConvParameter *param, schema::Format data_format, const std::stri
mindspore::lite::opencl::OpenCLRuntime::DeleteInstance();
}
std::array<std::string, 4> GenFilenames(ConvParameter *param, schema::Format data_format, const std::string &path) {
auto full_path = path + "inputNHWC_" + std::to_string(param->input_batch_) + "x" + std::to_string(param->input_h_) +
"x" + std::to_string(param->input_w_) + "x" + std::to_string(param->input_channel_) +
"_outputNHWC_" + std::to_string(param->output_batch_) + "x" + std::to_string(param->output_h_) +
"x" + std::to_string(param->output_w_) + "x" + std::to_string(param->output_channel_) +
"_kernelHW_" + std::to_string(param->kernel_h_) + "x" + std::to_string(param->kernel_w_) +
"_strideHW_" + std::to_string(param->stride_h_) + "x" + std::to_string(param->stride_w_) +
"_padTopBottomLeftRight_" + std::to_string(param->pad_u_) + "x" + std::to_string(param->pad_d_) +
"x" + std::to_string(param->pad_l_) + "x" + std::to_string(param->pad_r_) + "_dilationHW_1x1/";
if (data_format == schema::Format_NHWC4) {
return std::array<std::string, 4>{full_path + "input_NHWC4.bin", full_path + "weight_OHWI.bin",
full_path + "bias_C4.bin", full_path + "expect_NHWC4.bin"};
} else {
return std::array<std::string, 4>{full_path + "input_NHWC.bin", full_path + "weight_OHWI.bin",
full_path + "bias_C.bin", full_path + "expect_NHWC.bin"};
}
TEST_F(TestConvolutionOpenCL, in1x224x224x3_out1x112x112x32_k33_s22_p0101) {
TEST_MAIN(
schema::Format_NHWC, schema::Format_NHWC4, "testcases/mobilenetv2_fp32/",
"inputNHWC_1x224x224x3_outputNHWC_1x112x112x32_kernelHW_3x3_strideHW_2x2_padTopBottomLeftRight_0x1x0x1_dilationHW_"
"1x1");
}
TEST_F(TestConvolutionOpenCL, in1x224x224x3_out1x112x112x32_k33_s22_p0101) {
auto param = new ConvParameter;
param->input_batch_ = 1, param->input_h_ = 224, param->input_w_ = 224, param->input_channel_ = 3;
param->output_batch_ = 1, param->output_h_ = 112, param->output_w_ = 112, param->output_channel_ = 32;
param->kernel_h_ = 3, param->kernel_w_ = 3;
param->stride_h_ = 2, param->stride_w_ = 2;
param->pad_u_ = 0, param->pad_d_ = 1, param->pad_l_ = 0, param->pad_r_ = 1;
auto filenames = GenFilenames(param, schema::Format_NHWC4, "testcases/mobilenetv2_fp32/");
// std::cout << filenames[0] << std::endl;
// std::cout << filenames[1] << std::endl;
// std::cout << filenames[2] << std::endl;
// std::cout << filenames[3] << std::endl;
TEST_MAIN(param, schema::Format_NHWC4, filenames[0], filenames[1], filenames[2], filenames[3]);
lite::opencl::OpenCLRuntime::DeleteInstance();
// TEST_F(TestConvolutionOpenCL, in1x1x64x512_out1x1x64x7358_k11_s11_p0000) {
// TEST_MAIN(
// schema::Format_NHWC, schema::Format_NHWC4, "testcases/02_fp32/",
// "inputNHWC_1x1x64x512_outputNHWC_1x1x64x7358_kernelHW_1x1_strideHW_1x1_padTopBottomLeftRight_0x0x0x0_dilationHW_"
// "1x1");
//}
TEST_F(TestConvolutionOpenCL, winograd_inputNHWC_1x16x256x96_outputNHWC_1x16x256x80) {
TEST_MAIN(schema::Format_NHWC, schema::Format_NHWC4, "testcases/test_fp32/",
"inputNHWC_1x16x256x96_outputNHWC_1x16x256x80_kernelHW_3x3_strideHW_1x1_padTopBottomLeftRight_1x1x1x1_"
"dilationHW_1x1");
}
TEST_F(TestConvolutionOpenCL, winograd_inputNHWC_1x16x256x100_outputNHWC_1x16x256x96) {
TEST_MAIN(schema::Format_NHWC, schema::Format_NHWC4, "testcases/test_fp32/",
"inputNHWC_1x16x256x100_outputNHWC_1x16x256x96_kernelHW_3x3_strideHW_1x1_padTopBottomLeftRight_1x1x1x1_"
"dilationHW_1x1");
}
TEST_F(TestConvolutionOpenCL, in1x1x64x512_out1x1x64x7358_k11_s11_p0000) {
auto param = new ConvParameter;
param->input_batch_ = 1, param->input_h_ = 1, param->input_w_ = 64, param->input_channel_ = 512;
param->output_batch_ = 1, param->output_h_ = 1, param->output_w_ = 64, param->output_channel_ = 7358;
param->kernel_h_ = 1, param->kernel_w_ = 1;
param->stride_h_ = 1, param->stride_w_ = 1;
param->pad_u_ = 0, param->pad_d_ = 0, param->pad_l_ = 0, param->pad_r_ = 0;
auto filenames = GenFilenames(param, schema::Format_NHWC4, "testcases/02_fp32/");
// std::cout << filenames[0] << std::endl;
// std::cout << filenames[1] << std::endl;
// std::cout << filenames[2] << std::endl;
// std::cout << filenames[3] << std::endl;
TEST_MAIN(param, schema::Format_NHWC4, filenames[0], filenames[1], filenames[2], filenames[3]);
lite::opencl::OpenCLRuntime::DeleteInstance();
TEST_F(TestConvolutionOpenCL, winograd_inputNHWC_1x480x480x128_outputNHWC_1x480x480x128) {
TEST_MAIN(schema::Format_NHWC, schema::Format_NHWC4, "testcases/test_fp32/",
"inputNHWC_1x480x480x128_outputNHWC_1x480x480x128_kernelHW_3x3_strideHW_1x1_padTopBottomLeftRight_"
"1x1x1x1_dilationHW_1x1");
}
} // namespace mindspore
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册