Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
c000fb2f
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c000fb2f
编写于
4月 14, 2020
作者:
V
VectorSL
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gpu add float_status kernel
上级
39b9e831
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
452 addition
and
0 deletion
+452
-0
mindspore/ccsrc/kernel/gpu/cuda_impl/float_status_impl.cu
mindspore/ccsrc/kernel/gpu/cuda_impl/float_status_impl.cu
+138
-0
mindspore/ccsrc/kernel/gpu/cuda_impl/float_status_impl.cuh
mindspore/ccsrc/kernel/gpu/cuda_impl/float_status_impl.cuh
+28
-0
mindspore/ccsrc/kernel/gpu/math/float_status_gpu_kernel.cc
mindspore/ccsrc/kernel/gpu/math/float_status_gpu_kernel.cc
+38
-0
mindspore/ccsrc/kernel/gpu/math/float_status_gpu_kernel.h
mindspore/ccsrc/kernel/gpu/math/float_status_gpu_kernel.h
+130
-0
tests/st/ops/gpu/test_float_status_op.py
tests/st/ops/gpu/test_float_status_op.py
+118
-0
未找到文件。
mindspore/ccsrc/kernel/gpu/cuda_impl/float_status_impl.cu
0 → 100644
浏览文件 @
c000fb2f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "include/cuda_runtime.h"
#include "kernel/gpu/cuda_impl/float_status_impl.cuh"
template
<
typename
T
>
__global__
void
IsNan
(
const
size_t
size
,
const
T
*
input
,
bool
*
out
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
isnan
(
input
[
pos
]))
{
out
[
pos
]
=
true
;
}
else
{
out
[
pos
]
=
false
;
}
}
return
;
}
template
<
>
__global__
void
IsNan
(
const
size_t
size
,
const
half
*
input
,
bool
*
out
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
__hisnan
(
input
[
pos
]))
{
out
[
pos
]
=
true
;
}
else
{
out
[
pos
]
=
false
;
}
}
return
;
}
template
<
typename
T
>
__global__
void
IsInf
(
const
size_t
size
,
const
T
*
input
,
bool
*
out
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
isinf
(
input
[
pos
])
!=
0
)
{
out
[
pos
]
=
true
;
}
else
{
out
[
pos
]
=
false
;
}
}
return
;
}
template
<
>
__global__
void
IsInf
(
const
size_t
size
,
const
half
*
input
,
bool
*
out
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
__hisinf
(
input
[
pos
])
!=
0
)
{
out
[
pos
]
=
true
;
}
else
{
out
[
pos
]
=
false
;
}
}
return
;
}
template
<
typename
T
>
__global__
void
IsFinite
(
const
size_t
size
,
const
T
*
input
,
bool
*
out
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
isinf
(
input
[
pos
])
==
0
&&
!
isnan
(
input
[
pos
]))
{
out
[
pos
]
=
true
;
}
else
{
out
[
pos
]
=
false
;
}
}
return
;
}
template
<
>
__global__
void
IsFinite
(
const
size_t
size
,
const
half
*
input
,
bool
*
out
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
__hisinf
(
input
[
pos
])
==
0
&&
!
__hisnan
(
input
[
pos
]))
{
out
[
pos
]
=
true
;
}
else
{
out
[
pos
]
=
false
;
}
}
return
;
}
template
<
typename
T
>
__global__
void
FloatStatus
(
const
size_t
size
,
const
T
*
input
,
T
*
out
)
{
out
[
0
]
=
0
;
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
isinf
(
input
[
pos
])
!=
0
||
isnan
(
input
[
pos
]))
{
out
[
0
]
=
1
;
}
}
return
;
}
template
<
>
__global__
void
FloatStatus
(
const
size_t
size
,
const
half
*
input
,
half
*
out
)
{
out
[
0
]
=
0
;
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
(
size
);
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
__hisinf
(
input
[
pos
])
!=
0
||
__hisnan
(
input
[
pos
]))
{
out
[
0
]
=
1
;
}
}
return
;
}
template
<
typename
T
>
void
CalFloatStatus
(
const
size_t
size
,
const
T
*
input
,
T
*
output
,
cudaStream_t
cuda_stream
)
{
FloatStatus
<<<
GET_BLOCKS
(
size
),
GET_THREADS
,
0
,
cuda_stream
>>>
(
size
,
input
,
output
);
return
;
}
template
<
typename
T
>
void
CalIsNan
(
const
size_t
size
,
const
T
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
)
{
IsNan
<<<
GET_BLOCKS
(
size
),
GET_THREADS
,
0
,
cuda_stream
>>>
(
size
,
input
,
output
);
return
;
}
template
<
typename
T
>
void
CalIsInf
(
const
size_t
size
,
const
T
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
)
{
IsInf
<<<
GET_BLOCKS
(
size
),
GET_THREADS
,
0
,
cuda_stream
>>>
(
size
,
input
,
output
);
return
;
}
template
<
typename
T
>
void
CalIsFinite
(
const
size_t
size
,
const
T
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
)
{
IsFinite
<<<
GET_BLOCKS
(
size
),
GET_THREADS
,
0
,
cuda_stream
>>>
(
size
,
input
,
output
);
return
;
}
template
void
CalFloatStatus
<
float
>(
const
size_t
size
,
const
float
*
input
,
float
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalFloatStatus
<
half
>(
const
size_t
size
,
const
half
*
input
,
half
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalIsInf
<
float
>(
const
size_t
size
,
const
float
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalIsInf
<
half
>(
const
size_t
size
,
const
half
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalIsNan
<
float
>(
const
size_t
size
,
const
float
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalIsNan
<
half
>(
const
size_t
size
,
const
half
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalIsFinite
<
float
>(
const
size_t
size
,
const
float
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
);
template
void
CalIsFinite
<
half
>(
const
size_t
size
,
const
half
*
input
,
bool
*
output
,
cudaStream_t
cuda_stream
);
mindspore/ccsrc/kernel/gpu/cuda_impl/float_status_impl.cuh
0 → 100644
浏览文件 @
c000fb2f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_FLOATSTATUS_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_FLOATSTATUS_H_
#include "device/gpu/cuda_common.h"
template
<
typename
T
>
void
CalFloatStatus
(
const
size_t
size
,
const
T
*
input
,
T
*
output
,
cudaStream_t
stream
);
template
<
typename
T
>
void
CalIsNan
(
const
size_t
size
,
const
T
*
input
,
bool
*
output
,
cudaStream_t
stream
);
template
<
typename
T
>
void
CalIsInf
(
const
size_t
size
,
const
T
*
input
,
bool
*
output
,
cudaStream_t
stream
);
template
<
typename
T
>
void
CalIsFinite
(
const
size_t
size
,
const
T
*
input
,
bool
*
output
,
cudaStream_t
stream
);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_FLOATSTATUS_H_
mindspore/ccsrc/kernel/gpu/math/float_status_gpu_kernel.cc
0 → 100644
浏览文件 @
c000fb2f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/math/float_status_gpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
MS_REG_GPU_KERNEL_ONE
(
FloatStatus
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat32
).
AddOutputAttr
(
kNumberTypeFloat32
),
FloatStatusGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
FloatStatus
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat16
).
AddOutputAttr
(
kNumberTypeFloat16
),
FloatStatusGpuKernel
,
half
)
MS_REG_GPU_KERNEL_ONE
(
IsInf
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat32
).
AddOutputAttr
(
kNumberTypeBool
),
FloatStatusGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
IsInf
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat16
).
AddOutputAttr
(
kNumberTypeBool
),
FloatStatusGpuKernel
,
half
)
MS_REG_GPU_KERNEL_ONE
(
IsNan
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat32
).
AddOutputAttr
(
kNumberTypeBool
),
FloatStatusGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
IsNan
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat16
).
AddOutputAttr
(
kNumberTypeBool
),
FloatStatusGpuKernel
,
half
)
MS_REG_GPU_KERNEL_ONE
(
IsFinite
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat32
).
AddOutputAttr
(
kNumberTypeBool
),
FloatStatusGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
IsFinite
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat16
).
AddOutputAttr
(
kNumberTypeBool
),
FloatStatusGpuKernel
,
half
)
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/gpu/math/float_status_gpu_kernel.h
0 → 100644
浏览文件 @
c000fb2f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_FLOAT_STATUS_GPU_KERNEL_H
#define MINDSPORE_CCSRC_KERNEL_GPU_FLOAT_STATUS_GPU_KERNEL_H
#include <memory>
#include <vector>
#include <map>
#include <string>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/cuda_impl/float_status_impl.cuh"
namespace
mindspore
{
namespace
kernel
{
enum
Optype
{
OP_STATUS
=
0
,
OP_INF
,
OP_NAN
,
OP_FINITE
,
OP_INVALID
=
255
};
static
const
std
::
map
<
std
::
string
,
Optype
>
kOpTypeMap
=
{
{
"FloatStatus"
,
OP_STATUS
},
{
"IsInf"
,
OP_INF
},
{
"IsNan"
,
OP_NAN
},
{
"IsFinite"
,
OP_FINITE
}};
template
<
typename
T
>
class
FloatStatusGpuKernel
:
public
GpuKernel
{
public:
FloatStatusGpuKernel
()
:
kernel_name_
(
OP_INVALID
),
input_size_
(
0
),
output_size_
(
0
)
{}
~
FloatStatusGpuKernel
()
override
=
default
;
const
std
::
vector
<
size_t
>
&
GetInputSizeList
()
const
override
{
return
input_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetOutputSizeList
()
const
override
{
return
output_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetWorkspaceSizeList
()
const
override
{
return
workspace_size_list_
;
}
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
,
const
std
::
vector
<
AddressPtr
>
&
outputs
,
uintptr_t
stream_ptr
)
override
{
T
*
input
=
GetDeviceAddress
<
T
>
(
inputs
,
0
);
switch
(
kernel_name_
)
{
case
OP_STATUS
:
{
T
*
output
=
GetDeviceAddress
<
T
>
(
outputs
,
0
);
CalFloatStatus
(
input_size_
/
sizeof
(
T
),
input
,
output
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
break
;
}
case
OP_INF
:
{
bool
*
output
=
GetDeviceAddress
<
bool
>
(
outputs
,
0
);
CalIsInf
(
input_size_
/
sizeof
(
T
),
input
,
output
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
break
;
}
case
OP_NAN
:
{
bool
*
output
=
GetDeviceAddress
<
bool
>
(
outputs
,
0
);
CalIsNan
(
input_size_
/
sizeof
(
T
),
input
,
output
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
break
;
}
case
OP_FINITE
:
{
bool
*
output
=
GetDeviceAddress
<
bool
>
(
outputs
,
0
);
CalIsFinite
(
input_size_
/
sizeof
(
T
),
input
,
output
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
break
;
}
default:
{
MS_LOG
(
EXCEPTION
)
<<
"FloatStatus type "
<<
kernel_name_
<<
" is not supported."
;
}
}
return
true
;
}
bool
Init
(
const
CNodePtr
&
kernel_node
)
override
{
if
(
!
CheckParam
(
kernel_node
))
{
return
false
;
}
auto
shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
input_size_
=
sizeof
(
T
);
for
(
size_t
x
:
shape
)
{
input_size_
=
input_size_
*
x
;
}
auto
kernel_name
=
AnfAlgo
::
GetCNodeName
(
kernel_node
);
auto
iter
=
kOpTypeMap
.
find
(
kernel_name
);
if
(
iter
==
kOpTypeMap
.
end
())
{
MS_LOG
(
EXCEPTION
)
<<
"FloatStatus kernel "
<<
kernel_name
<<
" is not supported."
;
}
else
{
kernel_name_
=
iter
->
second
;
}
if
(
kernel_name_
==
OP_STATUS
)
{
output_size_
=
sizeof
(
T
);
}
else
{
output_size_
=
input_size_
/
sizeof
(
T
)
*
sizeof
(
bool
);
}
InitSizeLists
();
return
true
;
}
protected:
void
InitSizeLists
()
override
{
input_size_list_
.
push_back
(
input_size_
);
output_size_list_
.
push_back
(
output_size_
);
}
private:
bool
CheckParam
(
const
CNodePtr
&
kernel_node
)
{
size_t
input_num
=
AnfAlgo
::
GetInputTensorNum
(
kernel_node
);
if
(
input_num
!=
1
)
{
MS_LOG
(
ERROR
)
<<
"Input number is "
<<
input_num
<<
", but FloatStatusGpuKernel needs 1 output."
;
return
false
;
}
size_t
output_num
=
AnfAlgo
::
GetOutputTensorNum
(
kernel_node
);
if
(
output_num
!=
1
)
{
MS_LOG
(
ERROR
)
<<
"Output number is "
<<
output_num
<<
", but FloatStatusGpuKernel needs 1 output."
;
return
false
;
}
return
true
;
}
std
::
vector
<
size_t
>
input_size_list_
;
std
::
vector
<
size_t
>
output_size_list_
;
std
::
vector
<
size_t
>
workspace_size_list_
;
Optype
kernel_name_
;
size_t
input_size_
;
size_t
output_size_
;
};
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_FLOAT_STATUS_GPU_KERNEL_H
tests/st/ops/gpu/test_float_status_op.py
0 → 100644
浏览文件 @
c000fb2f
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
pytest
from
mindspore
import
Tensor
from
mindspore.ops
import
operations
as
P
import
mindspore.nn
as
nn
import
numpy
as
np
import
mindspore.context
as
context
class
Net
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
Net
,
self
).
__init__
()
self
.
status
=
P
.
FloatStatus
()
def
construct
(
self
,
x
):
return
self
.
status
(
x
)
class
Netnan
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
Netnan
,
self
).
__init__
()
self
.
isnan
=
P
.
IsNan
()
def
construct
(
self
,
x
):
return
self
.
isnan
(
x
)
class
Netinf
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
Netinf
,
self
).
__init__
()
self
.
isinf
=
P
.
IsInf
()
def
construct
(
self
,
x
):
return
self
.
isinf
(
x
)
class
Netfinite
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
Netfinite
,
self
).
__init__
()
self
.
isfinite
=
P
.
IsFinite
()
def
construct
(
self
,
x
):
return
self
.
isfinite
(
x
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
x1
=
np
.
array
([[
1.2
,
2
,
np
.
nan
,
88
]]).
astype
(
np
.
float32
)
x2
=
np
.
array
([[
np
.
inf
,
1
,
88.0
,
0
]]).
astype
(
np
.
float32
)
x3
=
np
.
array
([[
1
,
2
],
[
3
,
4
],
[
5.0
,
88.0
]]).
astype
(
np
.
float32
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_status
():
ms_status
=
Net
();
output1
=
ms_status
(
Tensor
(
x1
))
output2
=
ms_status
(
Tensor
(
x2
))
output3
=
ms_status
(
Tensor
(
x3
))
expect1
=
1
expect2
=
1
expect3
=
0
assert
output1
.
asnumpy
()[
0
]
==
expect1
assert
output2
.
asnumpy
()[
0
]
==
expect2
assert
output3
.
asnumpy
()[
0
]
==
expect3
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_nan
():
ms_isnan
=
Netnan
();
output1
=
ms_isnan
(
Tensor
(
x1
))
output2
=
ms_isnan
(
Tensor
(
x2
))
output3
=
ms_isnan
(
Tensor
(
x3
))
expect1
=
[[
False
,
False
,
True
,
False
]]
expect2
=
[[
False
,
False
,
False
,
False
]]
expect3
=
[[
False
,
False
],
[
False
,
False
],
[
False
,
False
]]
assert
(
output1
.
asnumpy
()
==
expect1
).
all
()
assert
(
output2
.
asnumpy
()
==
expect2
).
all
()
assert
(
output3
.
asnumpy
()
==
expect3
).
all
()
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_inf
():
ms_isinf
=
Netinf
();
output1
=
ms_isinf
(
Tensor
(
x1
))
output2
=
ms_isinf
(
Tensor
(
x2
))
output3
=
ms_isinf
(
Tensor
(
x3
))
expect1
=
[[
False
,
False
,
False
,
False
]]
expect2
=
[[
True
,
False
,
False
,
False
]]
expect3
=
[[
False
,
False
],
[
False
,
False
],
[
False
,
False
]]
assert
(
output1
.
asnumpy
()
==
expect1
).
all
()
assert
(
output2
.
asnumpy
()
==
expect2
).
all
()
assert
(
output3
.
asnumpy
()
==
expect3
).
all
()
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_finite
():
ms_isfinite
=
Netfinite
();
output1
=
ms_isfinite
(
Tensor
(
x1
))
output2
=
ms_isfinite
(
Tensor
(
x2
))
output3
=
ms_isfinite
(
Tensor
(
x3
))
expect1
=
[[
True
,
True
,
False
,
True
]]
expect2
=
[[
False
,
True
,
True
,
True
]]
expect3
=
[[
True
,
True
],
[
True
,
True
],
[
True
,
True
]]
assert
(
output1
.
asnumpy
()
==
expect1
).
all
()
assert
(
output2
.
asnumpy
()
==
expect2
).
all
()
assert
(
output3
.
asnumpy
()
==
expect3
).
all
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录