From bfa0f98c1c91c8e6805d41010dac0f12b01c69ce Mon Sep 17 00:00:00 2001 From: jonyguo Date: Fri, 24 Apr 2020 11:52:02 +0800 Subject: [PATCH] fix: update mindrecord example docs --- example/convert_to_mindrecord/README.md | 57 +++++++++++++++++++++---- 1 file changed, 48 insertions(+), 9 deletions(-) diff --git a/example/convert_to_mindrecord/README.md b/example/convert_to_mindrecord/README.md index 8d3b25e31..008cff5ee 100644 --- a/example/convert_to_mindrecord/README.md +++ b/example/convert_to_mindrecord/README.md @@ -1,15 +1,53 @@ -# MindRecord generating guidelines +# Guideline to Efficiently Generating MindRecord -- [MindRecord generating guidelines](#mindrecord-generating-guidelines) +- [What does the example do](#what-does-the-example-do) +- [Example test for ImageNet](#example-test-for-imagenet) +- [How to use the example for other dataset](#how-to-use-the-example-for-other-dataset) - [Create work space](#create-work-space) - [Implement data generator](#implement-data-generator) - [Run data generator](#run-data-generator) + -## Create work space +## What does the example do + +This example provides an efficient way to generate MindRecord. Users only need to define the parallel granularity of training data reading and the data reading function of a single task. That is, they can efficiently convert the user's training data into MindRecord. + +1. run_template.sh: entry script, users need to modify parameters according to their own training data. +2. writer.py: main script, called by run_template.sh, it mainly reads user training data in parallel and generates MindRecord. +3. template/mr_api.py: uers define their own parallel granularity of training data reading and single task reading function through the template. + +## Example test for ImageNet + +1. Download and prepare the ImageNet dataset as required. + + > [ImageNet dataset download address](http://image-net.org/download) + + Store the downloaded ImageNet dataset in a folder. The folder contains all images and a mapping file that records labels of the images. + + In the mapping file, there are three columns, which are separated by spaces. They indicate image classes, label IDs, and label names. The following is an example of the mapping file: + ``` + n02119789 1 pen + n02100735 2 notbook + n02110185 3 mouse + n02096294 4 orange + ``` +2. Edit run_imagenet.sh and modify the parameters +3. Run the bash script + ```bash + bash run_imagenet.sh + ``` +4. Performance result + + | Training Data | General API | Current Example | Env | + | ---- | ---- | ---- | ---- | + |ImageNet(140G)| 2h40m | 50m | CPU: Intel Xeon Gold 6130 x 64, Memory: 256G, Storage: HDD | + +## How to use the example for other dataset +### Create work space Assume the dataset name is 'xyz' * Create work space from template @@ -18,7 +56,7 @@ Assume the dataset name is 'xyz' cp -r template xyz ``` -## Implement data generator +### Implement data generator Edit dictionary data generator * Edit file @@ -27,20 +65,21 @@ Edit dictionary data generator vi xyz/mr_api.py ``` - Two API, 'mindrecord_task_number' and 'mindrecord_dict_data', must be implemented +Two API, 'mindrecord_task_number' and 'mindrecord_dict_data', must be implemented - 'mindrecord_task_number()' returns number of tasks. Return 1 if data row is generated serially. Return N if generator can be split into N parallel-run tasks. - 'mindrecord_dict_data(task_id)' yields dictionary data row by row. 'task_id' is 0..N-1, if N is return value of mindrecord_task_number() - Tricky for parallel run -- For imagenet, one directory can be a task. +- For ImageNet, one directory can be a task. - For TFRecord with multiple files, each file can be a task. - For TFRecord with 1 file only, it could also be split into N tasks. Task_id=K means: data row is picked only if (count % N == K) +### Run data generator -## Run data generator * run python script ```shell cd ${your_mindspore_home}/example/convert_to_mindrecord - python writer.py --mindrecord_script imagenet [...] + python writer.py --mindrecord_script xyz [...] ``` + > You can put this command in script **run_xyz.sh** for easy execution + -- GitLab