Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
b391eb2b
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b391eb2b
编写于
6月 17, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 17, 2020
浏览文件
操作
浏览文件
下载
差异文件
!2209 add function for quant_utils that convert float to int
Merge pull request !2209 from chenzhongming/master
上级
65f2212f
56369180
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
33 addition
and
1 deletion
+33
-1
mindspore/train/quant/quant_utils.py
mindspore/train/quant/quant_utils.py
+33
-1
未找到文件。
mindspore/train/quant/quant_utils.py
浏览文件 @
b391eb2b
...
@@ -19,6 +19,7 @@ import numpy as np
...
@@ -19,6 +19,7 @@ import numpy as np
def
cal_quantization_params
(
input_min
,
def
cal_quantization_params
(
input_min
,
input_max
,
input_max
,
data_type
,
num_bits
=
8
,
num_bits
=
8
,
symmetric
=
False
,
symmetric
=
False
,
narrow_range
=
False
):
narrow_range
=
False
):
...
@@ -28,6 +29,7 @@ def cal_quantization_params(input_min,
...
@@ -28,6 +29,7 @@ def cal_quantization_params(input_min,
Args:
Args:
input_min (int, list): The dimension of channel or 1.
input_min (int, list): The dimension of channel or 1.
input_max (int, list): The dimension of channel or 1.
input_max (int, list): The dimension of channel or 1.
data_type (numpy type) : Can ben numpy int8, numpy uint8.
num_bits (int): Quantization number bit, support 4 and 8bit. Default: 8.
num_bits (int): Quantization number bit, support 4 and 8bit. Default: 8.
symmetric (bool): Quantization algorithm use symmetric or not. Default: False.
symmetric (bool): Quantization algorithm use symmetric or not. Default: False.
narrow_range (bool): Quantization algorithm use narrow range or not. Default: False.
narrow_range (bool): Quantization algorithm use narrow range or not. Default: False.
...
@@ -52,7 +54,7 @@ def cal_quantization_params(input_min,
...
@@ -52,7 +54,7 @@ def cal_quantization_params(input_min,
# scale = 1.0, zp = 0.0
# scale = 1.0, zp = 0.0
return
np
.
ones
(
input_min
.
shape
),
np
.
zeros
(
input_min
.
shape
)
return
np
.
ones
(
input_min
.
shape
),
np
.
zeros
(
input_min
.
shape
)
if
symmetric
:
if
data_type
==
np
.
int8
:
quant_min
=
0
-
2
**
(
num_bits
-
1
)
quant_min
=
0
-
2
**
(
num_bits
-
1
)
quant_max
=
2
**
(
num_bits
-
1
)
quant_max
=
2
**
(
num_bits
-
1
)
else
:
else
:
...
@@ -84,3 +86,33 @@ def cal_quantization_params(input_min,
...
@@ -84,3 +86,33 @@ def cal_quantization_params(input_min,
zp
=
np
.
floor
(
zp_double
+
0.5
)
zp
=
np
.
floor
(
zp_double
+
0.5
)
return
scale
,
zp
return
scale
,
zp
def
weight2int
(
data
,
scale
,
zero_point
):
r
"""
calculate int8/uint8 weight from fp32. the formula is defined as:
.. math::
int8/uint8 = round(float/scale) + offset
Args:
data (int, list): The dimension of channel or 1. Should be NCHW.
scale (int, list): The dimension of channel or 1.
zero_point (int, list): The dimension of channel or 1.
Outputs:
weight (int, list): The dimension of channel or 1.
Examples:
>>> weight = weight2int([1, 2, 1], 1, 0)
"""
if
scale
.
shape
!=
zero_point
.
shape
:
raise
ValueError
(
"scale and zero_point should have the same shape."
)
if
scale
.
shape
[
0
]
>
0
:
scale
=
scale
.
reshape
(
1
,
-
1
,
1
,
1
)
zero_point
=
zero_point
.
reshape
(
1
,
-
1
,
1
,
1
)
return
np
.
round
((
data
/
scale
)
+
zero_point
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录