diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index 08cd481582d14828cae70c57ae17fc796154c8c8..af0deacc16f9f9729a5122cef96848af994dd994 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -1888,7 +1888,7 @@ class Cosh(PrimitiveWithInfer): class Asinh(PrimitiveWithInfer): """ - Compute inverse hyperbolic cosine of x element-wise. + Compute inverse hyperbolic sine of x element-wise. Inputs: - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. @@ -2645,7 +2645,7 @@ class Sin(PrimitiveWithInfer): class Asin(PrimitiveWithInfer): """ - Computes arccosine of input element-wise. + Computes arcsine of input element-wise. Inputs: - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index b6556d01f4679f899bc7dfdbf186bcb291d5fbfa..24b081bdad3b8d7a94228f909443860a490a3ff1 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -1905,7 +1905,7 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer): >>> mean_grad = Tensor(np.arange(12).astype(np.float32).reshape(2, 3, 2), mindspore.float32) >>> mean_square = Tensor(np.arange(-8, 4).astype(np.float32).reshape(2, 3, 2), mindspore.float32) >>> moment = Tensor(np.arange(12).astype(np.float32).reshape(2, 3, 2), mindspore.float32) - >>> grad = Tensor(np.arange(12).astype(np.float32).rehspae(2, 3, 2), mindspore.float32) + >>> grad = Tensor(np.arange(12).astype(np.float32).reshape(2, 3, 2), mindspore.float32) >>> learning_rate = Tensor(0.9, mindspore.float32) >>> decay = 0.0 >>> momentum = 1e-10