提交 aec85d29 编写于 作者: E ervinzhang

applied minor fixes

上级 71982329
......@@ -519,11 +519,6 @@ build_opencl() {
fi
}
build_gtest() {
cd ${BASEPATH}
git submodule update --init --recursive third_party/googletest
}
build_opencv() {
cd ${BASEPATH}
if [[ "${INC_BUILD}" == "off" ]]; then
......@@ -566,7 +561,6 @@ build_minddata_lite_deps()
build_opencv
build_eigen
build_jpeg_turbo
build_gtest
}
build_lite()
......
......@@ -46,7 +46,7 @@ std::shared_ptr<tensor::MSTensor> Execute::operator()(std::shared_ptr<tensor::MS
MS_LOG(ERROR) << "Operation execution failed : " << rc.ToString();
return nullptr;
}
return std::shared_ptr<tensor::MSTensor>(new tensor::DETensor(std::move(de_output)));
return std::make_shared<tensor::DETensor>(std::move(de_output));
}
......
#ifndef DATASET_INCLUDE_DETENSOR_H_
#define DATASET_INCLUDE_DETENSOR_H_
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_API_DETENSOR_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_API_DETENSOR_H_
#include "include/ms_tensor.h"
#include "minddata/dataset/include/tensor.h"
#include "minddata/dataset/util/status.h"
......@@ -8,13 +7,15 @@ namespace mindspore {
namespace tensor {
class DETensor : public MSTensor {
public:
// brief Create a MSTensor pointer.
//
// param data_type DataTypeId of tensor to be created.
// param shape Shape of tensor to be created.
// return MSTensor pointer.
/// \brief Create a MSTensor pointer.
/// \param[data_type] DataTypeId of tensor to be created.
/// \param[shape] Shape of tensor to be created.
/// \return - MSTensor pointer.
static MSTensor *CreateTensor(TypeId data_type, const std::vector<int> &shape);
/// \brief Create a MSTensor pointer.
/// \param[path] Path file to be read.
/// \return - MSTensor pointer.
static MSTensor *CreateTensor(const std::string &path);
DETensor(TypeId data_type, const std::vector<int> &shape);
......@@ -23,6 +24,8 @@ class DETensor : public MSTensor {
~DETensor() = default;
/// \brief Create a duplicate instance, convert the DETensor to the LiteTensor.
/// \return - MSTensor pointer.
MSTensor *ConvertToLiteTensor();
std::shared_ptr<dataset::Tensor> tensor() const;
......@@ -50,4 +53,4 @@ class DETensor : public MSTensor {
};
} // namespace tensor
} // namespace mindspore
#endif // DATASET_INCLUDE_DETENSOR_H_
\ No newline at end of file
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_API_DETENSOR_H_
\ No newline at end of file
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
......
......@@ -62,104 +62,3 @@ TEST_F(MindDataTestEager, Test1) {
double elapsed_time_ms = std::chrono::duration<double, std::milli>(t_end-t_start).count();
MS_LOG(INFO) << "duration: " << elapsed_time_ms << " ms\n";
}
/*
TEST_F(MindDataTestEager, Test2) {
// string dir for image folder
std::string in_dir = datasets_root_path_ + "/testPK/data";
// run dataset with decode = on
std::shared_ptr<Dataset> ds = ImageFolder(in_dir, true, RandomSampler(false));
std::shared_ptr<TensorOperation> normalize_op = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0});
EXPECT_TRUE(normalize_op != nullptr);
std::shared_ptr<TensorOperation> resize_op = vision::Resize({224, 224});
EXPECT_TRUE(resize_op != nullptr);
ds = ds->Map({normalize_op, resize_op});
EXPECT_TRUE(ds != nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_TRUE(iter != nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
MS_LOG(WARNING) << i << ".";
iter->Stop();
}
TEST_F(MindDataTestEager, Test3) {
// string dir for image folder
ConfigManager cm = ConfigManager();
cm.set_num_parallel_workers(1);
std::string in_dir = datasets_root_path_ + "/testPK/data";
// run dataset with decode = on
std::shared_ptr<Dataset> ds = ImageFolder(in_dir, true, RandomSampler(false));
std::shared_ptr<TensorOperation> normalize_op = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0});
EXPECT_TRUE(normalize_op != nullptr);
std::shared_ptr<TensorOperation> resize_op = vision::Resize({224, 224});
EXPECT_TRUE(resize_op != nullptr);
ds = ds->Map({normalize_op, resize_op});
EXPECT_TRUE(ds != nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_TRUE(iter != nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
MS_LOG(WARNING) << i << ".";
iter->Stop();
}
TEST_F(MindDataTestEager, Test4) {
// string dir for image folder
ConfigManager cm = ConfigManager();
cm.set_num_parallel_workers(1);
std::string in_dir = datasets_root_path_ + "/testPK/data";
// run dataset with decode = on
std::shared_ptr<Dataset> ds = ImageFolder(in_dir, true, RandomSampler(false));
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_TRUE(iter != nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
image = Execute(vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}))(image);
EXPECT_TRUE(image != nullptr);
image = Execute(vision::Resize({224, 224}))(image);
EXPECT_TRUE(image != nullptr);
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
MS_LOG(WARNING) << i << ".";
iter->Stop();
}
*/
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册