提交 ade90be4 编写于 作者: S sunsuodong

addn

上级 10076ffe
......@@ -85,7 +85,7 @@ bool IsInputFormatDtypeMatched(const KernelAttr &kernel_attr, const std::vector<
const std::vector<TypeId> &input_types,
const std::vector<size_t> &input_not_cnode_indexes) {
if (kernel_attr.GetInputSize() != input_types.size()) {
MS_LOG(ERROR) << "required input num:" << kernel_attr.GetInputSize() << ", actual input num:" << input_types.size();
MS_LOG(DEBUG) << "required input num:" << kernel_attr.GetInputSize() << ", actual input num:" << input_types.size();
return false;
}
auto input_num = input_types.size();
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/addn_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
#include "ir/primitive.h"
namespace mindspore {
namespace kernel {
void AddNCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
input_num_ = AnfAlgo::GetInputTensorNum(kernel_node);
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
}
bool AddNCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
for (size_t i = 0; i < output_shape_[0]; ++i) {
for (size_t j = 0; j < output_shape_[1]; ++j) {
for (size_t k = 0; k < output_shape_[2]; ++k) {
for (size_t m = 0; m < output_shape_[3]; ++m) {
auto offset = CPUKernelUtils::CalcOffset(output_shape_, i, j, k, m);
float sum = 0;
for (size_t index = 0; index < input_num_; ++index) {
auto input_addr = reinterpret_cast<float *>(inputs[index]->addr);
sum += input_addr[offset];
}
output_addr[offset] = sum;
}
}
}
}
return true;
}
void AddNCPUKernel::CheckParam(const CNodePtr &kernel_node) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape.size() > 4) {
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but AddNCPUKernel olny support 4d or lower.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but AddNCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class AddNCPUKernel : public CPUKernel {
public:
AddNCPUKernel() : input_num_(0) {}
~AddNCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void CheckParam(const CNodePtr &kernel_node);
size_t input_num_;
std::vector<size_t> output_shape_;
};
MS_REG_CPU_KERNEL(
AddN,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
AddNCPUKernel);
MS_REG_CPU_KERNEL(AddN,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
AddNCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_
......@@ -42,7 +42,7 @@ std::shared_ptr<CPUKernel> CPUKernelFactory::Create(const std::string &kernel_na
MS_EXCEPTION_IF_NULL(kernel_info);
const KernelBuildInfo *kernel_build_Info = kernel_info->select_kernel_build_info();
MS_EXCEPTION_IF_NULL(kernel_build_Info);
std::pair<bool, size_t> ret_pair = CPUKernelAttrCheck(kernel_name, kernel_build_Info);
std::pair<bool, size_t> ret_pair = CPUKernelAttrCheck(kernel_name, *kernel_build_Info);
if (ret_pair.first) {
return (name_to_attr_creator_.find(kernel_name)->second)[ret_pair.second].second();
}
......@@ -50,7 +50,7 @@ std::shared_ptr<CPUKernel> CPUKernelFactory::Create(const std::string &kernel_na
}
std::pair<bool, size_t> CPUKernelFactory::CPUKernelAttrCheck(const std::string &kernel_name,
const KernelBuildInfo *kernel_info) {
const KernelBuildInfo &kernel_info) {
auto iter = name_to_attr_creator_.find(kernel_name);
if (iter == name_to_attr_creator_.end()) {
MS_LOG(INFO) << "Not registered CPU kernel: op[" << kernel_name << "]!";
......@@ -59,25 +59,32 @@ std::pair<bool, size_t> CPUKernelFactory::CPUKernelAttrCheck(const std::string &
auto creators = iter->second;
for (size_t index = 0; index < creators.size(); ++index) {
auto attr_creator = creators[index];
for (size_t i = 0; i < kernel_info->GetInputNum(); ++i) {
if (kernel_info->GetInputDeviceType(i) != attr_creator.first.GetInputAttr(i).first) {
MS_LOG(WARNING) << "cpu kernel attr check failed. input index: " << i << ".";
MS_LOG(WARNING) << "kernel info type:" << kernel_info->GetInputDeviceType(i) << ", "
<< "register type:" << attr_creator.first.GetInputAttr(i).first;
return std::make_pair(false, 0);
if (CPUKernelSingleAttrCheck(attr_creator, kernel_info)) {
return std::make_pair(true, index);
}
}
for (size_t i = 0; i < kernel_info->GetOutputNum(); ++i) {
if (kernel_info->GetOutputDeviceType(i) != attr_creator.first.GetOutputAttr(i).first) {
MS_LOG(WARNING) << "cpu kernel attr check failed. output index: " << i << ".";
MS_LOG(WARNING) << "kernel info type:" << kernel_info->GetOutputDeviceType(i) << ", "
<< "register type:" << attr_creator.first.GetOutputAttr(i).first;
return std::make_pair(false, 0);
}
bool CPUKernelFactory::CPUKernelSingleAttrCheck(const std::pair<KernelAttr, CPUKernelCreator> &attr_creator,
const KernelBuildInfo &kernel_info) {
for (size_t i = 0; i < kernel_info.GetInputNum(); ++i) {
if (kernel_info.GetInputDeviceType(i) != attr_creator.first.GetInputAttr(i).first) {
MS_LOG(DEBUG) << "cpu kernel attr check failed. input index: " << i << ".";
MS_LOG(DEBUG) << "kernel info type:" << kernel_info.GetInputDeviceType(i) << ", "
<< "register type:" << attr_creator.first.GetInputAttr(i).first;
return false;
}
}
return std::make_pair(true, index);
for (size_t i = 0; i < kernel_info.GetOutputNum(); ++i) {
if (kernel_info.GetOutputDeviceType(i) != attr_creator.first.GetOutputAttr(i).first) {
MS_LOG(DEBUG) << "cpu kernel attr check failed. output index: " << i << ".";
MS_LOG(DEBUG) << "kernel info type:" << kernel_info.GetOutputDeviceType(i) << ", "
<< "register type:" << attr_creator.first.GetOutputAttr(i).first;
return false;
}
return std::make_pair(false, 0);
}
return true;
}
std::vector<KernelAttr> CPUKernelFactory::GetSupportedKernelAttrList(const std::string &kernel_name) {
......
......@@ -43,7 +43,9 @@ class CPUKernelFactory {
CPUKernelFactory() = default;
~CPUKernelFactory() = default;
DISABLE_COPY_AND_ASSIGN(CPUKernelFactory)
std::pair<bool, size_t> CPUKernelAttrCheck(const std::string &kernel_name, const KernelBuildInfo *kernel_info);
std::pair<bool, size_t> CPUKernelAttrCheck(const std::string &kernel_name, const KernelBuildInfo &kernel_info);
bool CPUKernelSingleAttrCheck(const std::pair<KernelAttr, CPUKernelCreator> &attr_creator,
const KernelBuildInfo &kernel_info);
std::map<std::string, std::vector<std::pair<KernelAttr, CPUKernelCreator>>> name_to_attr_creator_;
};
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class Net2I(nn.Cell):
def __init__(self):
super(Net2I, self).__init__()
self.addn = P.AddN()
def construct(self, x, y):
return self.addn((x, y))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net_2Input():
x = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
y = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
addn = Net2I()
output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32))
print("output:\n", output)
expect_result = [[[0., 2.],
[4., 6.],
[8., 10.]],
[[12., 14.],
[16., 18.],
[20., 22.]]]
assert (output.asnumpy() == expect_result).all()
class Net3I(nn.Cell):
def __init__(self):
super(Net3I, self).__init__()
self.addn = P.AddN()
def construct(self, x, y, z):
return self.addn((x, y, z))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net_3Input():
x = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
y = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
z = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
addn = Net3I()
output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32), Tensor(z, mstype.float32))
print("output:\n", output)
expect_result = [[0., 3., 6.],
[9., 12., 15]]
assert (output.asnumpy() == expect_result).all()
if __name__ == '__main__':
test_net_2Input()
test_net_3Input()
# Copyright 2019 Huawei Technologies Co., Ltd
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册