Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a3b65f7b
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3b65f7b
编写于
8月 28, 2020
作者:
C
chenfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add manual quant network of resnet
上级
8f69fb41
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
337 addition
and
7 deletion
+337
-7
mindspore/train/quant/quant_utils.py
mindspore/train/quant/quant_utils.py
+6
-3
model_zoo/official/cv/resnet50_quant/eval.py
model_zoo/official/cv/resnet50_quant/eval.py
+2
-1
model_zoo/official/cv/resnet50_quant/models/resnet_quant.py
model_zoo/official/cv/resnet50_quant/models/resnet_quant.py
+1
-1
model_zoo/official/cv/resnet50_quant/models/resnet_quant_manual.py
.../official/cv/resnet50_quant/models/resnet_quant_manual.py
+325
-0
model_zoo/official/cv/resnet50_quant/train.py
model_zoo/official/cv/resnet50_quant/train.py
+3
-2
未找到文件。
mindspore/train/quant/quant_utils.py
浏览文件 @
a3b65f7b
...
...
@@ -252,13 +252,14 @@ def without_fold_batchnorm(weight, cell_quant):
return
weight
,
bias
def
load_nonquant_param_into_quant_net
(
quant_model
,
params_dict
):
def
load_nonquant_param_into_quant_net
(
quant_model
,
params_dict
,
quant_new_params
=
None
):
"""
load fp32 model parameters to quantization model.
Args:
quant_model: quantization model
params_dict: f32 param
quant_model: quantization model.
params_dict: f32 param.
quant_new_params:parameters that exist in quantative network but not in unquantative network.
Returns:
None
...
...
@@ -277,6 +278,8 @@ def load_nonquant_param_into_quant_net(quant_model, params_dict):
for
name
,
param
in
quant_model
.
parameters_and_names
():
key_name
=
name
.
split
(
"."
)[
-
1
]
if
key_name
not
in
iterable_dict
.
keys
():
if
quant_new_params
is
not
None
and
key_name
in
quant_new_params
:
continue
raise
ValueError
(
f
"Can't find match parameter in ckpt,param name =
{
name
}
"
)
value_param
=
next
(
iterable_dict
[
key_name
],
None
)
if
value_param
is
not
None
:
...
...
model_zoo/official/cv/resnet50_quant/eval.py
浏览文件 @
a3b65f7b
...
...
@@ -20,7 +20,8 @@ import argparse
from
src.config
import
config_quant
from
src.dataset
import
create_dataset
from
src.crossentropy
import
CrossEntropy
from
models.resnet_quant
import
resnet50_quant
#from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from
models.resnet_quant_manual
import
resnet50_quant
#manually construct quantative network of resnet50
from
mindspore
import
context
from
mindspore.train.model
import
Model
...
...
model_zoo/official/cv/resnet50_quant/models/resnet_quant.py
浏览文件 @
a3b65f7b
...
...
@@ -209,7 +209,7 @@ class ResNet(nn.Cell):
return
out
def
resnet50_quant
(
class_num
=
10
001
):
def
resnet50_quant
(
class_num
=
10
):
"""
Get ResNet50 neural network.
...
...
model_zoo/official/cv/resnet50_quant/models/resnet_quant_manual.py
0 → 100644
浏览文件 @
a3b65f7b
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ResNet."""
import
numpy
as
np
import
mindspore.nn
as
nn
from
mindspore.ops
import
operations
as
P
from
mindspore
import
Tensor
from
mindspore.nn
import
FakeQuantWithMinMax
,
Conv2dBnFoldQuant
as
Conv2dBatchNormQuant
_ema_decay
=
0.999
_symmetric
=
True
_fake
=
True
_per_channel
=
True
def
_weight_variable
(
shape
,
factor
=
0.01
):
init_value
=
np
.
random
.
randn
(
*
shape
).
astype
(
np
.
float32
)
*
factor
return
Tensor
(
init_value
)
def
_conv3x3
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
3
,
3
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_conv1x1
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
1
,
1
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
1
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_conv7x7
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
7
,
7
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
7
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_bn
(
channel
):
return
nn
.
BatchNorm2d
(
channel
,
eps
=
1e-4
,
momentum
=
0.9
,
gamma_init
=
1
,
beta_init
=
0
,
moving_mean_init
=
0
,
moving_var_init
=
1
)
def
_bn_last
(
channel
):
return
nn
.
BatchNorm2d
(
channel
,
eps
=
1e-4
,
momentum
=
0.9
,
gamma_init
=
0
,
beta_init
=
0
,
moving_mean_init
=
0
,
moving_var_init
=
1
)
def
_fc
(
in_channel
,
out_channel
):
weight_shape
=
(
out_channel
,
in_channel
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Dense
(
in_channel
,
out_channel
,
has_bias
=
True
,
weight_init
=
weight
,
bias_init
=
0
)
class
ConvBNReLU
(
nn
.
Cell
):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def
__init__
(
self
,
in_planes
,
out_planes
,
kernel_size
=
3
,
stride
=
1
,
groups
=
1
):
super
(
ConvBNReLU
,
self
).
__init__
()
padding
=
(
kernel_size
-
1
)
//
2
conv
=
Conv2dBatchNormQuant
(
in_planes
,
out_planes
,
kernel_size
,
stride
,
pad_mode
=
'pad'
,
padding
=
padding
,
group
=
groups
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
)
layers
=
[
conv
,
nn
.
ActQuant
(
nn
.
ReLU
())]
if
_fake
else
[
conv
,
nn
.
ReLU
()]
self
.
features
=
nn
.
SequentialCell
(
layers
)
def
construct
(
self
,
x
):
output
=
self
.
features
(
x
)
return
output
class
ResidualBlock
(
nn
.
Cell
):
"""
ResNet V1 residual block definition.
Args:
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, stride=2)
"""
expansion
=
4
def
__init__
(
self
,
in_channel
,
out_channel
,
stride
=
1
):
super
(
ResidualBlock
,
self
).
__init__
()
channel
=
out_channel
//
self
.
expansion
self
.
conv1
=
ConvBNReLU
(
in_channel
,
channel
,
kernel_size
=
1
,
stride
=
1
)
self
.
conv2
=
ConvBNReLU
(
channel
,
channel
,
kernel_size
=
3
,
stride
=
stride
)
self
.
conv3
=
nn
.
SequentialCell
([
Conv2dBatchNormQuant
(
channel
,
out_channel
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
),
FakeQuantWithMinMax
(
ema
=
True
,
ema_decay
=
_ema_decay
,
symmetric
=
False
)
])
if
_fake
else
Conv2dBatchNormQuant
(
channel
,
out_channel
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
)
self
.
down_sample
=
False
if
stride
!=
1
or
in_channel
!=
out_channel
:
self
.
down_sample
=
True
self
.
down_sample_layer
=
None
if
self
.
down_sample
:
self
.
down_sample_layer
=
nn
.
SequentialCell
([
Conv2dBatchNormQuant
(
in_channel
,
out_channel
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
stride
,
pad_mode
=
'same'
,
padding
=
0
),
FakeQuantWithMinMax
(
ema
=
True
,
ema_decay
=
_ema_decay
,
symmetric
=
False
)
])
if
_fake
else
Conv2dBatchNormQuant
(
in_channel
,
out_channel
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
stride
,
pad_mode
=
'same'
,
padding
=
0
)
self
.
add
=
nn
.
TensorAddQuant
()
self
.
relu
=
P
.
ReLU
()
def
construct
(
self
,
x
):
identity
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
conv2
(
out
)
out
=
self
.
conv3
(
out
)
if
self
.
down_sample
:
identity
=
self
.
down_sample_layer
(
identity
)
out
=
self
.
add
(
out
,
identity
)
out
=
self
.
relu
(
out
)
return
out
class
ResNet
(
nn
.
Cell
):
"""
ResNet architecture.
Args:
block (Cell): Block for network.
layer_nums (list): Numbers of block in different layers.
in_channels (list): Input channel in each layer.
out_channels (list): Output channel in each layer.
strides (list): Stride size in each layer.
num_classes (int): The number of classes that the training images are belonging to.
Returns:
Tensor, output tensor.
Examples:
>>> ResNet(ResidualBlock,
>>> [3, 4, 6, 3],
>>> [64, 256, 512, 1024],
>>> [256, 512, 1024, 2048],
>>> [1, 2, 2, 2],
>>> 10)
"""
def
__init__
(
self
,
block
,
layer_nums
,
in_channels
,
out_channels
,
strides
,
num_classes
):
super
(
ResNet
,
self
).
__init__
()
if
not
len
(
layer_nums
)
==
len
(
in_channels
)
==
len
(
out_channels
)
==
4
:
raise
ValueError
(
"the length of layer_num, in_channels, out_channels list must be 4!"
)
self
.
conv1
=
ConvBNReLU
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"same"
)
self
.
layer1
=
self
.
_make_layer
(
block
,
layer_nums
[
0
],
in_channel
=
in_channels
[
0
],
out_channel
=
out_channels
[
0
],
stride
=
strides
[
0
])
self
.
layer2
=
self
.
_make_layer
(
block
,
layer_nums
[
1
],
in_channel
=
in_channels
[
1
],
out_channel
=
out_channels
[
1
],
stride
=
strides
[
1
])
self
.
layer3
=
self
.
_make_layer
(
block
,
layer_nums
[
2
],
in_channel
=
in_channels
[
2
],
out_channel
=
out_channels
[
2
],
stride
=
strides
[
2
])
self
.
layer4
=
self
.
_make_layer
(
block
,
layer_nums
[
3
],
in_channel
=
in_channels
[
3
],
out_channel
=
out_channels
[
3
],
stride
=
strides
[
3
])
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
flatten
=
nn
.
Flatten
()
self
.
end_point
=
nn
.
DenseQuant
(
out_channels
[
3
],
num_classes
,
has_bias
=
True
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
)
self
.
output_fake
=
nn
.
FakeQuantWithMinMax
(
ema
=
True
,
ema_decay
=
_ema_decay
)
def
_make_layer
(
self
,
block
,
layer_num
,
in_channel
,
out_channel
,
stride
):
"""
Make stage network of ResNet.
Args:
block (Cell): Resnet block.
layer_num (int): Layer number.
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer.
Returns:
SequentialCell, the output layer.
Examples:
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
"""
layers
=
[]
resnet_block
=
block
(
in_channel
,
out_channel
,
stride
=
stride
)
layers
.
append
(
resnet_block
)
for
_
in
range
(
1
,
layer_num
):
resnet_block
=
block
(
out_channel
,
out_channel
,
stride
=
1
)
layers
.
append
(
resnet_block
)
return
nn
.
SequentialCell
(
layers
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
c1
=
self
.
maxpool
(
x
)
c2
=
self
.
layer1
(
c1
)
c3
=
self
.
layer2
(
c2
)
c4
=
self
.
layer3
(
c3
)
c5
=
self
.
layer4
(
c4
)
out
=
self
.
mean
(
c5
,
(
2
,
3
))
out
=
self
.
flatten
(
out
)
out
=
self
.
end_point
(
out
)
out
=
self
.
output_fake
(
out
)
return
out
def
resnet50_quant
(
class_num
=
10
):
"""
Get ResNet50 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet50 neural network.
Examples:
>>> net = resnet50_quant(10)
"""
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
6
,
3
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
class_num
)
def
resnet101_quant
(
class_num
=
1001
):
"""
Get ResNet101 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet101 neural network.
Examples:
>>> net = resnet101(1001)
"""
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
23
,
3
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
class_num
)
model_zoo/official/cv/resnet50_quant/train.py
浏览文件 @
a3b65f7b
...
...
@@ -31,7 +31,8 @@ from mindspore.communication.management import init
import
mindspore.nn
as
nn
import
mindspore.common.initializer
as
weight_init
from
models.resnet_quant
import
resnet50_quant
#from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from
models.resnet_quant_manual
import
resnet50_quant
#manually construct quantative network of resnet50
from
src.dataset
import
create_dataset
from
src.lr_generator
import
get_lr
from
src.config
import
config_quant
...
...
@@ -85,7 +86,7 @@ if __name__ == '__main__':
# weight init and load checkpoint file
if
args_opt
.
pre_trained
:
param_dict
=
load_checkpoint
(
args_opt
.
pre_trained
)
load_nonquant_param_into_quant_net
(
net
,
param_dict
)
load_nonquant_param_into_quant_net
(
net
,
param_dict
,
[
'step'
]
)
epoch_size
=
config
.
epoch_size
-
config
.
pretrained_epoch_size
else
:
for
_
,
cell
in
net
.
cells_and_names
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录